
ASSOCIATION ANALYSIS

The dataset of interest here involves transactions at a grocery store (groceries.csv). This example is
adapted from the book Machine Learning in R by Brett Lantz 1 Each line in the txt file contains a comma
separated list of items purchased in a single transaction. There is no other identifying information given
about the purchaser of the items. We’ll start by reading the data into a transaction dataset for use in the
arules package.

> library(arules)

> groceries = read.transactions("groceries.csv", sep = ",")

> summary(groceries)

transactions as itemMatrix in sparse format with

9835 rows (elements/itemsets/transactions) and

169 columns (items) and a density of 0.02609146

most frequent items:

whole milk other vegetables rolls/buns soda

2513 1903 1809 1715

yogurt (Other)

1372 34055

element (itemset/transaction) length distribution:

sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55 46

17 18 19 20 21 22 23 24 26 27 28 29 32

29 14 14 9 11 4 6 1 1 1 1 3 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.000 3.000 4.409 6.000 32.000

includes extended item information - examples:

labels

1 abrasive cleaner

2 artif. sweetener

3 baby cosmetics

The arules library is very specific about how the data is read in to R and formatted. The easiest way is
to start with a text file contains transactions in a list like this. We can examine the first five transactions as
follows:

1Machine Learning with R, by Brett Lantz. Packt publishing 2015. Second Edition.

1



2

> inspect(groceries[1:5])

items

1 {citrus fruit,

margarine,

ready soups,

semi-finished bread}

2 {coffee,

tropical fruit,

yogurt}

3 {whole milk}

4 {cream cheese,

meat spreads,

pip fruit,

yogurt}

5 {condensed milk,

long life bakery product,

other vegetables,

whole milk}

We can also examine and visualize the frequency of the items.

> itemFrequency(groceries[, 1:3])

abrasive cleaner artif. sweetener baby cosmetics

0.0035587189 0.0032536858 0.0006100661

> itemFrequencyPlot(groceries, support = 0.1)

> itemFrequencyPlot(groceries, topN = 20)

Can also create this visualization of the sparse matrix for the first hundred transactions.

> image(groceries[1:100])



3

Items (Columns)

Tr
an

sa
ct

io
ns

 (
R

ow
s)

20

40

60

80

50 100 150

The apriori function
learns association rules from the transaction data set. Here, the default settings result in zero rules
learned:

> apriori(groceries)

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.8 0.1 1 none FALSE TRUE 0.1 1 10 rules

ext

FALSE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 983

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [8 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].



4

checking subsets of size 1 2 done [0.00s].

writing ... [0 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

set of 0 rules

We’ll have to set support and confidence levels to learn more rules:

> rules <- apriori(groceries, parameter = list(support = 0.006, confidence = 0.25, minlen = 2))

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport support minlen maxlen target

0.25 0.1 1 none FALSE TRUE 0.006 2 10 rules

ext

FALSE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 59

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].

sorting and recoding items ... [109 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 done [0.00s].

writing ... [463 rule(s)] done [0.00s].

creating S4 object ... done [0.00s].

> rules

set of 463 rules

> summary(rules)

set of 463 rules

rule length distribution (lhs + rhs):sizes

2 3 4

150 297 16

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 2.000 3.000 2.711 3.000 4.000

summary of quality measures:

support confidence lift

Min. :0.006101 Min. :0.2500 Min. :0.9932

1st Qu.:0.007117 1st Qu.:0.2971 1st Qu.:1.6229

Median :0.008744 Median :0.3554 Median :1.9332

Mean :0.011539 Mean :0.3786 Mean :2.0351

3rd Qu.:0.012303 3rd Qu.:0.4495 3rd Qu.:2.3565

Max. :0.074835 Max. :0.6600 Max. :3.9565



5

mining info:

data ntransactions support confidence

groceries 9835 0.006 0.25

Look at the first three rules in the output. How are they sorted?

> inspect(rules[1:3])

lhs rhs support confidence lift

1 {potted plants} => {whole milk} 0.006914082 0.4000000 1.565460

2 {pasta} => {whole milk} 0.006100661 0.4054054 1.586614

3 {herbs} => {root vegetables} 0.007015760 0.4312500 3.956477

Sort the rules by lift:

> inspect(sort(rules, by = "lift")[1:5])

lhs rhs support confidence lift

1 {herbs} => {root vegetables} 0.007015760 0.4312500 3.956477

2 {berries} => {whipped/sour cream} 0.009049314 0.2721713 3.796886

3 {other vegetables,

tropical fruit,

whole milk} => {root vegetables} 0.007015760 0.4107143 3.768074

4 {beef,

other vegetables} => {root vegetables} 0.007930859 0.4020619 3.688692

5 {other vegetables,

tropical fruit} => {pip fruit} 0.009456024 0.2634561 3.482649

Perhaps you’re interested in finding subsets of rules containing any certain items, for example rules that
contain the items “chocolate" or “ice cream":

> sweetrules <- subset(rules, items %in% c("chocolate","ice cream"))

> inspect(sweetrules)

lhs rhs support confidence lift

87 {chocolate} => {soda} 0.01352313 0.2725410 1.562939

88 {chocolate} => {other vegetables} 0.01270971 0.2561475 1.323810

89 {chocolate} => {whole milk} 0.01667514 0.3360656 1.315243


