Attribute Information: Variables regarding bank client data: 1 - age (numeric) 2 - job : type of job (categorical: 'admin.','blue-collar','entrepreneur','housemaid','management','retired','self-employed','services','student','technician','unemployed','unknown') 3 - marital : marital status (categorical: 'divorced','married','single','unknown'; note: 'divorced' means divorced or widowed) 4 - education (categorical: 'basic.4y','basic.6y','basic.9y','high.school','illiterate','professional.course','university.degree','unknown') 5 - default: has credit in default? (categorical: 'no','yes','unknown') 6 - housing: has housing loan? (categorical: 'no','yes','unknown') 7 - loan: has personal loan? (categorical: 'no','yes','unknown') 17 - balance: the individual's checking account balance Variables related to macroeconomic factors: 8 - emp.var.rate: employment variation rate - quarterly indicator (numeric) 9 - cons.price.inx: consumer price index - monthly indicator (numeric) 10 - cons.conf.idx: consumer confidence index - monthly indicator (numeric) 11 - euribor3m: euribor 3 month rate - daily indicator (numeric) 12 - nr.employed: number of employees - quarterly indicator (numeric) Other attributes: 13 - y - please ignore this column Output variable (desired target): 16 - next.product: what is the next product that the consumer encountered, if any, in six months following data collection. Source: [Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014