DECISION TREES

The first chunk of code below simply reads in the UCI Breast Cancer data and creates a training and test
dataset. We’ve skipped the validation step because we're just building one default tree and seeing how it
performs on a holdout sample.

options(digits=2)

load("breast_cancer.Rdata")

set.seed(7515)

perm=sample (1:699)

BC_randomOrder=BCdata[perm,]

train = BC_randomOrder[1:floor(0.75%699),]

test = BC_randomOrder[(floor(0.75%699)+1):699,]

V V V V V V V

Now we’ll build a default decision tree model using entropy as the metric for building the tree. The rpart
package is the most popular for building decision trees.

> library("rpart")
> tree = rpart(Target . - Target, data=train, method='class',
+ parms = list(split='entropy'))

To display the decision tree (and then label it), use the plot() and text() functions. The option uniform=T
causes all the branches of the tree to have the same length. The first two commands and the last command
in this chunk of code are merely used to set and reset the margins of the plot window. You will notice
that the default tree plots leave much to be desired. We’ll fancify them later in this code!

.pardefault = par()
par(mai=c(.2,.2,.2,.2))
plot(tree, uniform=T)
text (tree)

#text (tree, use.n=T)
par(.pardefault)

V V. V V V V

All we see in the resulting tree (Figure 1) is the decision at every leaf. While this tells us the most
prevalent target class of each leaf, it does not display the predicted probability of that outcome in that
leaf. We can get that information by adding the option use.n=T to the text() function, but it is almost
invariably unreadable!

Unfortunately the tree does not even tell us how the split should be used. For example, the first split in
the tree is V14 > 52.5." However, the tree does not indicate whether observations meeting that constraint
should proceed down the left or right branches of the tree! I'll save you some trouble and let you know
that the "TRUE’ values, i.e. those that meet the given condition, are sent down the LEFT branch of the
tree.

Sizeg 2.5
I
Barex 4.5 Shape< 2.5
Sizex 4.5
0 1 0
Bareg 7.5
1
Margin< 3.5
1
0 1

Figure 1: Default Decision Tree for Breast Cancer Data

Variable Importance

We can also obtain statistics describing variable importance. In general, variable importance is typically
calculated using some impurity function, i() that measures the impurity of a given node like entropy or
the Gini coefficient. Recall that we decide to split some node if the change in that impurity measure is
significant. If t; is the left child of a split and ¢t is the right child of a given node t, and N, Ng, N are
the number of observations in the left, right and root node respectively, then the change in that impurity
measure is calculated as N N

Ai(t) = i(t) — WLi(tL) - WRi(tR).

We use that change in impurity measure then to calculate the variable importance of variable x;,
denoted I(xx) by adding up the weighted impurity decreases for all nodes t where x; is used. If x is
only used in one split, then the variable importance is just the impurity decrease for that one split. (Note:
if using random forests, we can average this importance over all trees in the forest.)

Ix) =Y %Ai(t)

t

For our BreastCancer dataset, we can examine the variable importance measures using the following
code:

> tree$variable.importance

Size Shape Epithelial Chromatin Normal Bare Margin
182.5 157.8 140.1 134.1 132.1 130.0 6.3
CT ID
2.8 2.6

Or create a bar plot to quickly investigate the relative differences,

> library('lattice')

> barchart(tree$variable.importance[order (tree$variable.importance)],

+ xlab = 'Importance', horiz=T, xlim=c(0,2000),ylab='Variable',

+ main = 'Variable Importance',cex.names=0.8, las=2, col = 'orange')

Variable Importance

Size

Shape

Epithelial

Chromatin

Normal

Variable

Bare

Margin

CT

I I I
500 1000 1500

Importance

Computing Validation Misclassification

R has a nice function, predict(), which allows us to apply a model to a new set of data. The resulting output
is just a vector or matrix of predictions. We can either output an n x 2 matrix of predicted probabilites (for

each observation we predict the probability that it belongs to each possible class (malignant or benign)) or
we can just predict a class (0 or 1) for each observation — these options are chosen by the type= option.
We'll then work with those predictions to determine the validation misclassification rate ourselves. Let’s
compute training misclassification while we're at it.

> tscores = predict(tree,type='class')

> scores = predict(tree, test, type='class')
> cat('Training Misclassification Rate:',

+ sum(tscores!=train$Target) /nrow(train))

Training Misclassification Rate: 0.038

> cat('Validation Misclassification Rate:',
+ sum(scores!=test$Target) /nrow(test))

Validation Misclassification Rate: 0.074

Visual Aesthetics

As you've already noticed, the tree plots straight out of the rpart package leave much to be desired.
Luckily others have put some work into giving us more plot options. Check out the documentation for
the prp() function in the rpart.plot library. In that documentation you will find a variety of descriptions
for potential display options as specified by the type= and extra= options. Below we look at some quick
examples of how these plots can look a little more appealing.

library("rattle") # Fancy tree plot

library("rpart.plot") # Enhanced tree plots

library("RColorBrewer") # Color selection for fancy tree plot

library("party") # Alternative decision tree algorithm
library("partykit") # Convert rpart object to BinaryTree

fancyRpartPlot (tree) # Looks completely terrible but has
potential for smaller trees, fewer classes

#

#

#

prp(tree)

prp(tree, type =3, extra=100) # label branches, label nodes with % of obs

prp(tree, type =3, extra=2) # label branches, label nodes with misclass rate

prp(tree, type =3, extra=8) # label branches, label nodes with pred prob of class

BEWARE WITH BINARY TREES WHERE WE TYPICALLY WANT TO SHOW PROB OF SUCCESS/FAILURE

FOR EVERY NODE IN THE TREE!

prp(tree, type =0, extra=8, leaf.round=1, border.col=1,
box.col=brewer.pal(10,"Set3") [tree$frame$yvall,)

+ VV V V V V V V V V V V V V.V

NV

S'Ze<25
Bare < 7.5
Margin < 3.5
argin

Bare < 4.5 Shape < 2.5
0 1
0.75 0.85

\

