
PENALIZED REGRESSION

Ridge and The LASSO

Note: The example contained herein was copied from the lab exercise in Chapter 6 of Introduction to Statistical Learning
by Daniela Witten, Trevor Hastie, Gareth M. James, Robert Tibshirani.

For this exercise, we’ll use some baseball data from 1986-1987. The Hitters dataset contains information
about 322 baseball players and 20 attributes as follows:

1. AtBat: Number of times at bat in 1986

2. Hits: Number of hits in 1986

3. HmRun: Number of home runs in 1986

4. Runs: Number of runs in 1986

5. RBI: Number of runs batted in in 1986

6. Walks: Number of walks in 1986

7. Years: Number of years in the major leagues

8. CAtBat: Number of times at bat during his career

9. CHits: Number of hits during his career

10. CHmRun: Number of home runs during his career

11. CRuns: Number of runs during his career

12. CRBI: Number of runs batted in during his career

13. CWalks: Number of walks during his career

14. League: A factor with levels A and N indicating player’s league at the end of 1986

15. Division: A factor with levels E and W indicating player’s division at the end of 1986

16. PutOuts: Number of put outs in 1986

17. Assists: Number of assists in 1986

1

2

18. Errors: Number of errors in 1986

19. Salary: 1987 annual salary on opening day in thousands of dollars

20. NewLeague: A factor with levels A and N indicating player’s league at the beginning of 1987

This dataset is available in the ISLR library. The target variable of interest here is the players’ salaries.
The target variable is missing for 59 of the players, thus we must omit those players from our analysis.

> library(leaps) #stepwise selection

> library(glmnet) #lasso/ridge/elastic net

> load("Hitters.Rdata")

> Hitters = na.omit(Hitters) # omit rows with missing values

Stepwise Selection Methods

We’ll start by looking at forward backward selection using the leaps library and the regsubsets command.
The task is to pick the size/complexity of our model. The best way to do this is to use validation or
cross-validation. Cross-validation gets a little confusing in this context, so we will keep the computation
simpler and just use a single validation dataset. To create the index vectors for the training and test
datasets, we’ll create a random logical vector which selects true values (for the training set) 60% of the
time.

> set.seed(7515)

> train=sample(c(T,F), nrow(Hitters), rep=TRUE, p=c(0.6,0.4))

> test=!train

> regfit.fwd = regsubsets(Salary ~ ., data=Hitters[train,], nvmax=19, method="forward")

> regfit.bwd = regsubsets(Salary ~ ., data=Hitters[train,], nvmax=19, method="backward")

> summary(regfit.fwd)

Subset selection object

Call: regsubsets.formula(Salary ~ ., data = Hitters[train,], nvmax = 19,

method = "forward")

19 Variables (and intercept)

Forced in Forced out

AtBat FALSE FALSE

Hits FALSE FALSE

HmRun FALSE FALSE

Runs FALSE FALSE

RBI FALSE FALSE

Walks FALSE FALSE

Years FALSE FALSE

CAtBat FALSE FALSE

CHits FALSE FALSE

CHmRun FALSE FALSE

CRuns FALSE FALSE

CRBI FALSE FALSE

CWalks FALSE FALSE

LeagueN FALSE FALSE

DivisionW FALSE FALSE

PutOuts FALSE FALSE

Assists FALSE FALSE

Errors FALSE FALSE

NewLeagueN FALSE FALSE

1 subsets of each size up to 19

3

Selection Algorithm: forward

AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI

1 (1) "*" " "

2 (1) " " "*" " " " " " " " " " " " " " " " " "*" " "

3 (1) " " "*" " " " " " " " " " " "*" " " " " "*" " "

4 (1) "*" "*" " " " " " " " " " " "*" " " " " "*" " "

5 (1) "*" "*" " " " " " " " " " " "*" " " " " "*" " "

6 (1) "*" "*" " " " " " " "*" " " "*" " " " " "*" " "

7 (1) "*" "*" " " " " " " "*" " " "*" " " " " "*" " "

8 (1) "*" "*" " " "*" " " "*" " " "*" " " " " "*" " "

9 (1) "*" "*" " " "*" " " "*" " " "*" " " " " "*" " "

10 (1) "*" "*" " " "*" " " "*" " " "*" " " "*" "*" " "

11 (1) "*" "*" " " "*" " " "*" " " "*" " " "*" "*" "*"

12 (1) "*" "*" " " "*" " " "*" "*" "*" " " "*" "*" "*"

13 (1) "*" "*" " " "*" " " "*" "*" "*" " " "*" "*" "*"

14 (1) "*" "*" " " "*" " " "*" "*" "*" " " "*" "*" "*"

15 (1) "*" "*" " " "*" " " "*" "*" "*" " " "*" "*" "*"

16 (1) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*"

17 (1) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*"

18 (1) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*"

19 (1) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN

1 (1) " " " " " " " " " " " " " "

2 (1) " " " " " " " " " " " " " "

3 (1) " " " " " " " " " " " " " "

4 (1) " " " " " " " " " " " " " "

5 (1) " " " " " " "*" " " " " " "

6 (1) " " " " " " "*" " " " " " "

7 (1) "*" " " " " "*" " " " " " "

8 (1) "*" " " " " "*" " " " " " "

9 (1) "*" " " "*" "*" " " " " " "

10 (1) "*" " " "*" "*" " " " " " "

11 (1) "*" " " "*" "*" " " " " " "

12 (1) "*" " " "*" "*" " " " " " "

13 (1) "*" " " "*" "*" " " "*" " "

14 (1) "*" " " "*" "*" "*" "*" " "

15 (1) "*" "*" "*" "*" "*" "*" " "

16 (1) "*" "*" "*" "*" "*" "*" " "

17 (1) "*" "*" "*" "*" "*" "*" " "

18 (1) "*" "*" "*" "*" "*" "*" "*"

19 (1) "*" "*" "*" "*" "*" "*" "*"

> summary(regfit.bwd)

Subset selection object

Call: regsubsets.formula(Salary ~ ., data = Hitters[train,], nvmax = 19,

method = "backward")

19 Variables (and intercept)

Forced in Forced out

AtBat FALSE FALSE

Hits FALSE FALSE

HmRun FALSE FALSE

Runs FALSE FALSE

RBI FALSE FALSE

Walks FALSE FALSE

Years FALSE FALSE

CAtBat FALSE FALSE

CHits FALSE FALSE

4

CHmRun FALSE FALSE

CRuns FALSE FALSE

CRBI FALSE FALSE

CWalks FALSE FALSE

LeagueN FALSE FALSE

DivisionW FALSE FALSE

PutOuts FALSE FALSE

Assists FALSE FALSE

Errors FALSE FALSE

NewLeagueN FALSE FALSE

1 subsets of each size up to 19

Selection Algorithm: backward

AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI

1 (1) "*" " "

2 (1) " " "*" " " " " " " " " " " " " " " " " "*" " "

3 (1) "*" "*" " " " " " " " " " " " " " " " " "*" " "

4 (1) "*" "*" " " " " " " "*" " " " " " " " " "*" " "

5 (1) "*" "*" " " " " " " "*" " " " " " " " " "*" " "

6 (1) "*" "*" " " " " " " "*" " " " " " " " " "*" " "

7 (1) "*" "*" " " " " " " "*" " " " " " " "*" "*" " "

8 (1) "*" "*" " " " " " " "*" " " " " " " "*" "*" "*"

9 (1) "*" "*" " " "*" " " "*" " " " " " " "*" "*" "*"

10 (1) "*" "*" " " "*" " " "*" "*" " " " " "*" "*" "*"

11 (1) "*" "*" " " "*" " " "*" "*" " " " " "*" "*" "*"

12 (1) "*" "*" " " "*" " " "*" "*" " " " " "*" "*" "*"

13 (1) "*" "*" " " "*" " " "*" "*" " " " " "*" "*" "*"

14 (1) "*" "*" " " "*" " " "*" "*" " " " " "*" "*" "*"

15 (1) "*" "*" " " "*" " " "*" "*" "*" " " "*" "*" "*"

16 (1) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*"

17 (1) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*"

18 (1) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*"

19 (1) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"

CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN

1 (1) " " " " " " " " " " " " " "

2 (1) " " " " " " " " " " " " " "

3 (1) " " " " " " " " " " " " " "

4 (1) " " " " " " " " " " " " " "

5 (1) "*" " " " " " " " " " " " "

6 (1) "*" " " " " "*" " " " " " "

7 (1) "*" " " " " "*" " " " " " "

8 (1) "*" " " " " "*" " " " " " "

9 (1) "*" " " " " "*" " " " " " "

10 (1) "*" " " " " "*" " " " " " "

11 (1) "*" " " "*" "*" " " " " " "

12 (1) "*" " " "*" "*" " " "*" " "

13 (1) "*" " " "*" "*" "*" "*" " "

14 (1) "*" "*" "*" "*" "*" "*" " "

15 (1) "*" "*" "*" "*" "*" "*" " "

16 (1) "*" "*" "*" "*" "*" "*" " "

17 (1) "*" "*" "*" "*" "*" "*" " "

18 (1) "*" "*" "*" "*" "*" "*" "*"

19 (1) "*" "*" "*" "*" "*" "*" "*"

The summaries tell us which variables show up in the best p-variable models where p ranges from 1
input to all 19 inputs. This spacious output can be hard to read, but we can use the vorder output vector
to tell us in what order the variables the model should contain if we allow p variables into the model.
You can easily see that each selection method provided us with different models, no matter what number
of variables we choose to allow.

5

> regfit.fwd$vorder

[1] 1 12 3 9 2 17 7 14 5 16 11 13 8 19 18 15 4 6 20 10

> regfit.bwd$vorder

[1] 1 12 3 2 7 14 17 11 13 5 8 16 19 18 15 9 4 6 20 10

We can get the actual coefficients from the chosen models using the coef() function and specifying the
number of variables we want:

> coef(regfit.fwd, 7)

(Intercept) AtBat Hits Walks CAtBat CRuns

49.1354867 -2.5488907 8.8952359 6.5829602 -0.1290065 2.1072678

CWalks PutOuts

-0.7728877 0.2119603

> coef(regfit.bwd, 7)

(Intercept) AtBat Hits Walks CHmRun CRuns

17.9102884 -2.8964270 9.9139855 8.4739365 0.8614003 1.0895680

CWalks PutOuts

-0.9142449 0.1631992

Since the regsubsets function only outputs a set of coefficients for each value of p, we need a model
matrix to compute the predictions, ŷ = Xβ̂, on the test data. The model.matrix command makes this easy
for us. Keep in mind that matrix multiplication in R is done using the %*% command, and that we only
want to score the test data.

> X = model.matrix(Salary~., data=Hitters[test,])

> fwd.val.MSE=vector()

> bwd.val.MSE=vector()

> for (i in 1:19) {

+ beta.fwd = coef(regfit.fwd, i)

+ beta.bwd = coef(regfit.bwd, i)

+ pred.fwd = X[,names(beta.fwd)] %*% beta.fwd

+ pred.bwd = X[,names(beta.bwd)] %*% beta.bwd

+ fwd.val.MSE[i] = mean((Hitters$Salary[test] - pred.fwd)^2)

+ bwd.val.MSE[i] = mean((Hitters$Salary[test] - pred.bwd)^2)

+ }

> min(fwd.val.MSE)

[1] 137203.1

> min(bwd.val.MSE)

[1] 137510.2

6

Now that we have the validation MSE for each number of parameters and each selection technique, we
simply choose the number of parameters that minimizes the validation MSE for each selection method.

> plot(1:19,fwd.val.MSE,

+ type='b',
+ pch=16,

+ col='magenta',
+ xlab="Number of Inputs",

+ ylab = "Validation MSE",

+ main = "Forward Selection Results"

+)

> abline(v = which.min(fwd.val.MSE), col='blue')

5 10 15

14
00

00
14

50
00

15
00

00
15

50
00

Forward Selection Results

Number of Inputs

V
al

id
at

io
n

M
S

E

> plot(1:19,bwd.val.MSE,

+ type='b',
+ pch=16,

+ col='magenta',
+ xlab="Number of Inputs",

+ ylab = "Validation MSE",

+ main = "Backward Selection Results"

+)

> abline(v = which.min(bwd.val.MSE), col='blue')

7

5 10 15

14
00

00
14

50
00

15
00

00
15

50
00

Backward Selection Results

Number of Inputs

V
al

id
at

io
n

M
S

E

The two graphs are quite different. Forward selection chooses a 10 variable model whereas backward
selection chooses a 7 variable model. We can look at which variables were chosen with the coef() function:

> coef(regfit.fwd,10)

(Intercept) AtBat Hits Runs Walks CAtBat

93.9840930 -2.5569014 11.1792265 -5.4583086 8.0172922 -0.1594122

CHmRun CRuns CWalks DivisionW PutOuts

0.7415922 2.2277955 -0.8530738 -64.3153622 0.1866306

> coef(regfit.bwd,7)

(Intercept) AtBat Hits Walks CHmRun CRuns

17.9102884 -2.8964270 9.9139855 8.4739365 0.8614003 1.0895680

CWalks PutOuts

-0.9142449 0.1631992

In order to finalize the coefficients for the chosen models, we’d re-run the variable selection process
on the entire dataset using only the chosen number of variables.

8

> regfit.fwd.best = regsubsets(Salary~., data=Hitters, method="forward", nvmax=10)

> regfit.bwd.best = regsubsets(Salary~., data=Hitters, method="backward", nvmax=7)

> coef(regfit.fwd.best,10)

(Intercept) AtBat Hits Walks CAtBat CRuns

162.5354420 -2.1686501 6.9180175 5.7732246 -0.1300798 1.4082490

CRBI CWalks DivisionW PutOuts Assists

0.7743122 -0.8308264 -112.3800575 0.2973726 0.2831680

> coef(regfit.bwd.best,7)

(Intercept) AtBat Hits Walks CRuns CWalks

105.6487488 -1.9762838 6.7574914 6.0558691 1.1293095 -0.7163346

DivisionW PutOuts

-116.1692169 0.3028847

Ridge Regression

For the sake of exploration, let’s see what type of results Ridge Regression will provide on our validation
data. We’ll first tune the shrinkage parameter, λ, using cross-validation because this is standard practice.
This will be done using the glmnet package and glmnet() function. This package has built in capabilities
for doing a cross-validation loop which makes it convenient for our purposes. The glmnet() function
wants the user to specify a model matrix X (design matrix) and a vector containing the target variable y,
it does not use the yx̃ syntax that many other modeling packages use.

> X=model.matrix(Salary~. ,data=Hitters)[,-1]

> y = Hitters$Salary

We’ll now perform cross-validation to determine an optimal value of λ. We’ll only use the training
data for the cross-validation step. We can then test the ridge regression model with this lambda on our
validation dataset from the previous section. The option alpha=0 specifies ridge regression. We will
change this to alpha=1 to implement the LASSO.

> set.seed(1)

> cv.out = cv.glmnet(X[train,], y[train], alpha=0)

> plot(cv.out)

9

4 6 8 10 12

10
00

00
15

00
00

20
00

00

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

19 19 19 19 19 19 19 19 19 19 19 19 19

The method will choose the value of λ that has the best performance on cross-validation. We can grab
that value from the output, create a ridge model using it and then check the performance of the ridge
regression model on our out-of-sample test data used previously.

> bestlambda=cv.out$lambda.min

> bestlambda

[1] 26.01949

> ridge.mod = glmnet(X[train,], y[train], alpha=0, lambda=bestlambda)

> pred.ridge = predict(ridge.mod, newx=X[test,])

> val.MSE.ridge = mean((pred.ridge - y[test])^2)

> val.MSE.ridge

[1] 131187.9

Notice that the validation MSE for this ridge regression is a dramatic reduction from the MSE of
the full model in the original least-squares context. Just take a look at the validation MSE graphs from
forward/backward selection when the number of inputs is p>9. This ridge regression model does contain

10

all 19 predictor variables, but still performs well on out-of-sample data. That’s quite a feat! In certain
situations, it is not reasonable to keep all of the predictor variables in the model, but when it is feasible,
ridge regression is an excellent alternative to classical least-squares.

To get the final parameter estimates for the ridge regression model, we’d use the full data:

> out=glmnet(X,y,alpha=0, lambda=bestlambda)

> ridge.coef = predict(out, type="coefficients")

> ridge.coef

20 x 1 sparse Matrix of class "dgCMatrix"

s0

(Intercept) 79.33662716

AtBat -0.67098359

Hits 2.74575818

HmRun -1.34701139

Runs 1.03258681

RBI 0.71845486

Walks 3.35113396

Years -8.88376724

CAtBat -0.00024648

CHits 0.13341047

CHmRun 0.68080619

CRuns 0.28687848

CRBI 0.25962713

CWalks -0.27127440

LeagueN 52.98475229

DivisionW -122.77762704

PutOuts 0.26343208

Assists 0.16767503

Errors -3.67865103

NewLeagueN -17.86087278

The LASSO

If we wanted to use the LASSO in a context similar to forward selection, we’d probably start by looking
at the following plot, which shows how the coefficients in the model change as the shrinkage parameter
λ declines. When λ is very large, we are prohibited from adding any parameters to the model. We start
with the intercept-only null model. As λ gets smaller (moving to the right of the plot) we see that we can
start allowing variables to enter the model if they will drive down the sum of squared error. In this way,
LASSO acts as a selection technique, with one variable entering the model at a time.

Again, to run LASSO, we use the glmnet() function with the option alpha=1. We can tune the
shrinkage parameter λ using cross-validation on the training data, and then compare the resulting model
on our validation data.

> set.seed(1)

> cv.out=cv.glmnet(X[train,],y[train],alpha=1)

> plot(cv.out)

11

−2 0 2 4

10
00

00
15

00
00

20
00

00

Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

18 18 18 18 18 17 14 12 6 6 6 3 3 3 1

We can then use the information from the output dataset to obtain the best lambda and predict the
salaries of hitters from the out-of-sample validation data, computing the MSE as before.

> bestlambda=cv.out$lambda.min

> pred.lasso = predict(cv.out, s=bestlambda, newx=X[test,])

> val.MSE.lasso = mean((pred.lasso-y[test])^2)

> val.MSE.lasso

[1] 137038

The advantage of the LASSO over ridge regression is that the resulting coefficient estimates are sparse.
Below we see that 12 of the 19 coefficient estimates are exactly zero. So the LASSO model contains only 7
variables.

> out=glmnet(X,y,alpha=1,lambda=bestlambda)

> lasso.coef=predict(out, type="coefficients")

> lasso.coef

20 x 1 sparse Matrix of class "dgCMatrix"

s0

12

(Intercept) 1.379844e+02

AtBat -1.729667e+00

Hits 6.053342e+00

HmRun 1.586088e-01

Runs .

RBI .

Walks 5.054177e+00

Years -1.033180e+01

CAtBat -7.831918e-04

CHits .

CHmRun 5.607890e-01

CRuns 7.199190e-01

CRBI 3.905694e-01

CWalks -6.019104e-01

LeagueN 3.330146e+01

DivisionW -1.193222e+02

PutOuts 2.769324e-01

Assists 2.084560e-01

Errors -2.336031e+00

NewLeagueN .

You’ll notice if you play with the random seed in the cross validation step, you may get results that look
quite different. In fact, they are not as different as they seem - while so many coefficients may not be
exactly zero, they are close enough to zero that omitting those variables from the model will not have such
a drastic effect on the validation MSE. Once you get the final list of parameters, you may have to make a
judgement call on which parameter estimates are large enough to include. An alternative approach is to
use bestlambda=lambda.1se. The lambda.1se is the value of lambda that provided the simplest model but
which has cross-validation error within 1 standard deviation of the minimum error. This value of lambda
tends to provide results that are more stable across validation datasets. In our example, lambda.1se tends
to produce models with only 5 variables.

