
Classification And 
Regression Trees 

(CARTs)
a.k.a. Decision Trees
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Classification Trees
Categorical/Ordinal Targets



Building the model
• A tree is built by recursively partitioning the training data 

into successively purer subsets. 
• (Having mostly No’s or mostly Yes’s for the target.) 

• Partitioning is done according to some condition. 

• How do we begin to assess these partitions?

Employed 

yes no

Root Node

Age

<25

Root Node

≥25



Binary Splits vs.  
Multi-way Splits 

Employed 

yes no

Root Node

Employed 

full-time no

Root Node

part-time



Binary Splits vs.  
Multi-way Splits 

• We will primarily discuss binary splits  
• Everything is easily extended to multiway splits 
• Binary trees are far more common

Employed 

yes no

Root Node

Employed 

full-time no

Root Node

part-time



Categorical Input Variables
• We consider every possible way to separate into two  

distinct groups. 

• Example:

Leaf 1 Leaf 2

Single Married, Other
Married Single, Other
Other Single, Married

Marital Status= {Single, Married, Other}

• There are 2L-1 - 1 possible splits for a variable with L levels



• Only group together consecutive levels. 
• Example: 

Leaf 1 Leaf 2

Lower Middle, Upper
Lower, Middle Upper

Ordinal Input Variables

• There are L-1 such splits for an ordinal variable 
with L levels.

Class = {Lower, Middle, Upper}



Continuous Input Variables
• Continuous Attributes: We consider all possible splits 

between data points or bins of the variable. 
• Example:  

Age={18,18,19,21,21,23,25,29,35,37,40,40,41,43}



Binary Splits 
• Continuous Attributes: We consider all possible splits 

between data points or bins of the variable. 
• Example:  

Age={18,18,19,21,21,23,25,29,35,37,40,40,41,43}

Leaf 1 Leaf 2

Age < 19 Age ≥ 19



Binary Splits 
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Binary Splits 

Leaf 1 Leaf 2

Age < 25 Age ≥ 25

• Continuous Attributes: We consider all possible splits 
between data points or bins of the variable. 

• Example:  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Binary Splits 

Leaf 1 Leaf 2

Age < 29 Age ≥ 29

• Continuous Attributes: We consider all possible splits 
between data points or bins of the variable. 

• Example:  
Age={18,18,19,21,21,23,25,29,35,37,40,40,41,43}



Binary Splits 

Leaf 1 Leaf 2

Age < 35 Age ≥ 35
etc…

• Continuous Attributes: We consider all possible splits 
between data points or bins of the variable. 

• Example:  
Age={18,18,19,21,21,23,25,29,35,37,40,40,41,43}



Missing Values

• One of the benefits of decision trees is their ability to 
handle missing values. 

• Simply send missing values down one branch of the split 
(of course, it can get a lot fancier than that…)



Selecting the Best Split
• There are several measures used to select the best split.  
• All are similar, but not identical 
• All measure the purity of a node 

• The more pure a leaf is, the less training error we make in 
that leaf.

Yes: 50 
No: 50

Yes: 60 
No: 40

Yes: 75 
No: 25

Yes: 90 
No: 10

Yes: 100 
No: 0

Increasing Purity

p(yes) = 0.50 p(yes) = 0.75 p(yes) = 1.00



Measures of Impurity
• Let  be the fraction of records 

belonging to class i at a given node t. Let c be the number of 
classes in target variable.    

• Entropy 

• Gini 

• Classification Error

p(i | t) = p(class = i |node = t)

Gini(t) = 1 −
c

∑
i=1

[p(i | t)]2

Entropy(t) = −
c

∑
i=1

p(i | t)log2 p(i | t)

ClassificationError(t) = 1 − max
i

[p(i | t)]



Comparing Measures  
For a 2-class Problem



Selecting the best split
To assess a given test condition, we compare the impurity of 
the parent node (before split) with impurity of child nodes 
(after split).

Yes: 60 
No: 40

Yes: 30 
No: 20

Yes: 30 
No: 20
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No: 40

Yes: 30 
No: 5

Age<20 Age≥20
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Selecting the best split
To assess a given test condition, we compare the impurity of 
the parent node (before split) with impurity of child nodes 
(after split).

Yes: 60 
No: 40

Yes: 30 
No: 20

Yes: 30 
No: 20

Yes: 60 
No: 40

Yes: 30 
No: 5

Yes: 30 
No: 35

Age<20 Age≥20 Age≥18Age<18

Split on the right has the best 
GAIN in purity. 

 (i.e. Reduction of impurity)



Gain (Worth)

Δ:= Gain 
I(t):= Impurity of parent node 
I(tL)  and  I(tR):= Impurity of left/right child nodes   

n:= Number of observations in parent 
nL and nR := Number of observations in left/right child

Δ = I(t) − ( nL

n
I(tL) +

nR

n
I(tR))



Gain (Worth)

Δ:= Gain 
I(t):= Impurity of parent node 
I(tL)  and  I(tR):= Impurity of left/right child nodes   

n:= Number of observations in parent 
nL and nR := Number of observations in left/right child

Δ = I(t) − ( nL

n
I(tL) +

nR

n
I(tR))

weighted avg. of 
child node impurity



Gain (Worth)

Larger Gain ➔More pure branchesΔ:= Gain 
I(t):= Impurity of parent node 
I(tL)  and  I(tR):= Impurity of left/right child nodes   

n:= Number of observations in parent 
nL and nR := Number of observations in left/right child

Δ = I(t) − ( nL

n
I(tL) +

nR

n
I(tR))



Gain (Worth)

When entropy is used, this difference in entropy is called 
Information Gain. 

(For more information, see Tom Carter’s slides at 
http://astarte.csustan.edu/~tom/SFI-CSSS/2005/info-lec.pdf)

Δ = I(t) − ( nL

n
I(tL) +

nR

n
I(tR))



Example: Comparing 2 splits with Gain,  
Impurity Measure Gini

Yes: 60 
No: 40

Yes: 30 
No: 20

Yes: 30 
No: 20

Age<20 Age≥20

I(t) = Gini(t) = 1 −
c

∑
i=1

[p(i | t)]2

Δ = I(t) − ( nL

n
I(tL) +

nR

n
I(tR))
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Example: Comparing 2 splits with Gain,  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Example: Comparing 2 splits with Gain,  
Impurity Measure Gini
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Example: Comparing 2 splits with Gain,  
Impurity Measure Gini
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Example: Comparing 2 splits with Gain,  
Impurity Measure Gini

Yes: 60 
No: 40

Yes: 30 
No: 20

Yes: 30 
No: 20

Age<20 Age≥20

I(t) = Gini(t) = 1 −
c

∑
i=1

[p(i | t)]2

Δ = I(t) − ( nL

n
I(tL) +

nR

n
I(tR))

Δ = 0.48 − ( 50
100

0.32 +
50
100

0.48) = 0.08

Yes: 60 
No: 40

Yes: 40 
No: 10

Yes: 20 
No: 30

Age≥18Age<18

So the split on the right has a higher gain and  
is thus the better split



• Compute the gain for all possible splits and select the best one. 
• Repeat process recursively until some stopping condition is met 

•No splits meet some minimum Gain 
•All leaves have some minimum number of observations 
•A stopping condition is a way of prepruning the tree 

• Prune Tree 
•Generally difficult to choose the right thresholds in prepruning 
•Can grow a larger tree and prune back branches in supervised 
fashion. (Essentially picking the threshold after the fact.)

Creating the tree



Pruning a Decision Tree 
• Simplifies the model  

•Occam’s razor – law of parsimony 
• "Plurality is not to be posited without necessity”  
(Duns Scotus 1290) 

• Prevents overfitting the training data 
•  An accurate model on training: one bin for each leaf! 
#TerribleIdea 

• Simply remove leaves/nodes in a bottom-up fashion, 
cutting splits with lowest gain first, while optimizing 
performance on validation data



Viya Demo 1



Telco Customer Churn
https://www.kaggle.com/blastchar/telco-customer-churn



Problem Introduction
Goal: Predict behavior to retain customers. Analyze all relevant 
customer data and develop focused customer retention programs.

The data set includes information about: 
• Customers who left within the last month (and customers who did not) 

– the target column is called Churn 
• Services that each customer has signed up for – phone, multiple 

lines, internet, online security, online backup, device protection, tech 
support, and streaming TV and movies 

• Customer account information – tenure as a customer, contract, 
payment method, paperless billing, monthly charges, and total charges 

• Demographic info about customers – gender, age range, and if they 
have partners and dependents



1 2

3

4

5















Part II
CHAID and Regression Trees



• 1980 PhD thesis by Gordon Kass 
• Rather than using gain to determine splits, use  

chi-square tests! 
• Analyze decision tree splits like we do contingency tables:

CHAID 
CHi-squared Automatic Interaction Detection

Yes: 60 
No: 40

Yes: 50 
No: 10

Yes: 10 
No: 30

Age<20 Age≥20

Yes No Total

Age<20 50 10 60

Age≥20 10 30 40

Total 60 40 100

χ2 = ∑
cells

(observed − expected)2

expected



CHAID 
CHi-squared Automatic Interaction Detection

Larger  χ2 statistic  ➔  Smaller p-value  ➔  Stronger relationship

only b/c sample size is constant in 
comparison at a given parent node!

Yes: 60 
No: 40

Yes: 50 
No: 10

Yes: 10 
No: 30

Age<20 Age≥20

Yes No Total

Age<20 50 10 60

Age≥20 10 30 40

Total 60 40 100

χ2 = ∑
cells

(observed − expected)2

expected



CHAID 
CHi-squared Automatic Interaction Detection

Yes: 60 
No: 40

Yes: 50 
No: 10

Yes: 10 
No: 30

Age<20 Age≥20

Yes No Total

Age<20 50 10 60

Age≥20 10 30 40

Total 60 40 100

χ2 = ∑
cells

(observed − expected)2

expected

Uses logworth to choose a split:  logworth(p) = − log10(p)

Larger  χ2 statistic  ➔  Smaller p-value  ➔  Stronger relationship



Logworth 
logworth(p) = − log10(p)

Tells us approx # of decimal places of our p-value. 
Examples: 
• logworth(0.001) = -log10(0.001) = -(-3) = 3. 

• logworth(0.0001) = 4 
• logworth(0.0004) is between 3 and 4 

• 0.0001 < 0.0004 < 0.001  
• log10(0.0001) < log10(0.0004) < log10(0.001) 

• -log10(0.0001) > -log10(0.0004) > -log10(0.001) 

• 4 > -log10(0.0004) > 3 

LARGER LOGWORTH => BETTER SPLIT.



Kass Adjustments 
(i.e. Bonferroni Adjustments)

• Hypothesis testing to compare many variables at many 
potential splits. (Could be thousands of comparisons!) 

• Beware the family-wise error rate!! 
• Adjust the test significance to ( /m) where  is your 

desired significance level and m is number of tests. 
• Equivalent to multiplying p-values by m and keeping 

 unchanged.

α α

α



Suppose we compare Age (interval) with Insurance Status (binary).

Kass Adjustments 
(i.e. Bonferroni Adjustments)

Pick  
Age<20, Age 20 
 as the splitting 

criterion.

≥

Pick  
Insurance Status  

as splitting criterion.

• best p-value for Age is 0.01 and occurs 
when splitting at Age<20, Age 20 

• p-value for Insurance Status is 0.05
≥

• Age had 51 unique values (50 possible splits) 
• Insurance Status had 1 
• Not fair to compare these p-values! In 50 

tests, using one with a p-value of 0.01 is not 
convincing! 

• Adjust p-values by multiplying by number of 
tests: 

• Age: (0.01)*50 = 0.5 
• Insurance Status: (0.05)*1 = 0.05

Bonferroni AdjustmentNo Adjustment



Decision Tree Boundaries



Decision Tree Boundaries

X1 < a X1 ≥ a
a

X2 < b

X2 ≥ b

b



Decision Tree Response Surface  
(Building with legos - no diagonals!) 

P(  )



Regression Trees
Same thing, but with continuous target variables



Regression Tree Model
Start Here 

number in household

≥2
1

Number of purchases: 2

annual income

Number of purchases: 5

≥50k<50k

Number of purchases: 15



Regression Tree Model 
Creation

Average # purchases in 
whole training set:  8 

n=100

number in household

≥21

Average # purchases: 2 
n=25

Average # purchases: 10 
n=75

annual income

Average # purchases: 5 
n=37

Average # purchases: 15 
n=38

≥50k<50k



Determining Splits
• Entropy/Gini no longer make sense for continuous target 
• Instead: 

• Reduce Average Squared Error  (i.e. variance since prediction is 
mean of observations in leaf) 

• Or Maximize logworth using p-value from an F-test 
• Testing whether means (predicted value) of leaves is different 
• (Same as a t-test for difference of means in binary case) 
• Think ANOVA overall F-test: are any of these means different?

Nt

∑
i=1

(yi − ̂yi)2 =
Nt

∑
i=1

(yi − ȳi)2 = Var(y) within node



Regression Tree Response Surface 
(Building with legos - no diagonals!) 



Advantages  
of tree models

Alternatively via surrogate splits: designate an alternative variable split if the given 
variable is missing. Surrogate splits are chosen in a way that they split the population  
in the most similar fashion to the current split (often use a highly correlated variable).

1. Explainability 
2. Predicted probability/response has meaning in training set 
3. Can handle missing values

Employed 

yes missing

Root Node

no or

Employed 

yes missing

Root Node

no



Advantages  
of tree models

1. Explainability 
2. Predicted probability/response has meaning in training set 
3. Can handle missing values 
4. Can be used for variable selection 
5. Great for ensembles  

   (basis for Random Forests and Gradient Boosting)  
6. No assumptions to verify 
7. Generally immune to scale of input vars/standardization 

   (less effort in data pre-processing) 
8. Generally immune to the effect of outliers or high leverage        

observations



Disadvantages  
of tree models

1. Simplistic Regression/Decision Surface (non-smooth) 
2. All variables forced to interact 

a. Only the top split acts independently 
b. Inefficient 

3. Greedy Algorithms 
a. Struggle in the presence of many variables 
b.Cannot return the globally optimal tree 

4. Can be unstable (sensitive to small changes in input) - both 
when training the model and when making predictions.  
(think: sides of ‘lego buildings’ on the response surface)



Viya Demo 2
TelcoChurn using Tasks in SAS Studio





Viya Demo 3
Breast Cancer Malignancy



Viya Demo

Submit Code: 
cas;
caslib _all_ assign;

You will repeat this step 
EVERY time you use 
Viya to load the Public 
library! 



Identifying Malignant 
Tumors



Change target attribute to categorical and create a partition 
variable (split into training/validation data)



Create a decision tree and set the roles of the variables. 



Autotune Function



Stack Display







Additional Reference Slides
The K-S Statistic



Kolmogorov-Smirnov (KS) 
Statistic

0%

25%

50%

75%

100%

0 0.16 0.32 0.48 0.64 0.8 1

Cumulative NEG %
Cumulative POS %

Predicted Probability from Model

80% of negative 
(y=0) observations 
have predicted 
probability <48%

25% of positive 
observations (y=1) 
have predicted 
probability <48%



Kolmogorov-Smirnov (KS) 
Statistic

0%

25%

50%

75%

100%

0 0.16 0.32 0.48 0.64 0.8 1

Cumulative NEG %
Cumulative POS %

Predicted Probability from Model

Max Distance between  
these curves is the 
Kolmogorov-Smirnov  
(KS) Statistic


