Classification And Regression Trees (CARTs)

a.k.a. Decision Trees

A Decision Tree Model

A Decision Tree Model

Classification Trees

Categorical/Ordinal Targets

Building the model

- A tree is built by recursively partitioning the training data into successively **purer** subsets.
 - (Having mostly No's **or** mostly Yes's for the target.)
- Partitioning is done according to some condition.

• How do we begin to assess these partitions?

Binary Splits vs. Multi-way Splits

Binary Splits vs. Multi-way Splits

- We will primarily discuss binary splits
- Everything is easily extended to multiway splits
- Binary trees are far more common

Categorical Input Variables

• We consider **every possible way to separate** into two distinct groups.

• Example:

Marital Status= {Single, Married, Other}

Leaf 1	Leaf 2
Single	Married, Other
Married	Single, Other
Other	Single, Married

• There are 2^{L-1} - 1 possible splits for a variable with L levels

Ordinal Input Variables

- Only group together consecutive levels.
- Example:

Class = {Lower, Middle, Upper}

Leaf 1	Leaf 2
Lower	Middle, Upper
Lower, Middle	Upper

• There are L-1 such splits for an ordinal variable with L levels.

Continuous Input Variables

- Continuous Attributes: We consider all possible splits between data points <u>or bins of</u> the variable.
- Example:

```
Age = \{18, 18, 19, 21, 21, 23, 25, 29, 35, 37, 40, 40, 41, 43\}
```

- Continuous Attributes: We consider all possible splits between data points <u>or bins of</u> the variable.
- Example:

$$Age = \{18, 18, 19, 21, 21, 23, 25, 29, 35, 37, 40, 40, 41, 43\}$$

Leaf 1	Leaf 2
Age < 19	Age ≥ 19

- Continuous Attributes: We consider all possible splits between data points <u>or bins of</u> the variable.
- Example:

$$Age = \{18, 18, 19, 21, 21, 23, 25, 29, 35, 37, 40, 40, 41, 43\}$$

Leaf 1	Leaf 2
m Age < 21	Age ≥ 21

- Continuous Attributes: We consider all possible splits between data points <u>or bins of</u> the variable.
- Example:

$$Age = \{18, 18, 19, 21, 21, 23, 25, 29, 35, 37, 40, 40, 41, 43\}$$

Leaf 1	Leaf 2
m Age < 23	Age ≥ 23

- Continuous Attributes: We consider all possible splits between data points <u>or bins of</u> the variable.
- Example:

$$Age = \{18, 18, 19, 21, 21, 23, 25, 29, 35, 37, 40, 40, 41, 43\}$$

Leaf 1	Leaf 2
m Age < 25	Age ≥ 25

- Continuous Attributes: We consider all possible splits between data points <u>or bins of</u> the variable.
- Example:

$$Age = \{18, 18, 19, 21, 21, 23, 25, 29, 35, 37, 40, 40, 41, 43\}$$

Leaf 1	Leaf 2
m Age < 29	Age ≥ 29

- Continuous Attributes: We consider all possible splits between data points <u>or bins of</u> the variable.
- Example:

$$Age = \{18, 18, 19, 21, 21, 23, 25, 29, 35, 37, 40, 40, 41, 43\}$$

Leaf 1	Leaf 2
Age < 35	Age ≥ 35

etc...

Missing Values

• One of the benefits of decision trees is their ability to handle missing values.

• Simply send missing values down one branch of the split (of course, it can get a lot fancier than that...)

Selecting the Best Split

- There are several measures used to select the best split.
- All are similar, but not identical
- All measure the **purity** of a node

• The more pure a leaf is, the less *training* error we make in that leaf.

Measures of Impurity

- Let p(i|t) = p(class = i|node = t) be the fraction of records belonging to class i at a given node t. Let c be the number of classes in target variable.
- Entropy

$$Entropy(t) = -\sum_{i=1}^{c} p(i \mid t) \log_2 p(i \mid t)$$

• Gini

$$Gini(t) = 1 - \sum_{i=1}^{c} [p(i|t)]^2$$

• Classification Error

$$ClassificationError(t) = 1 - \max_{i} [p(i \mid t)]$$

Comparing Measures For a 2-class Problem

Selecting the best split

To assess a given test condition, we compare the impurity of the parent node (before split) with impurity of child nodes (after split).

Selecting the best split

To assess a given test condition, we compare the impurity of the parent node (before split) with impurity of child nodes

(after split).

(i.e. Reduction of impurity)

$$\Delta = I(t) - \left(\frac{n_L}{n}I(t_L) + \frac{n_R}{n}I(t_R)\right)$$

 $\Delta := Gain$

I(t):= Impurity of parent node

 $I(t_L)$ and $I(t_R)$:= Impurity of left/right child nodes

n:= Number of observations in parent

 n_L and $n_R := Number of observations in left/right child$

$$\Delta = I(t) - \left(\frac{n_L}{n}I(t_L) + \frac{n_R}{n}I(t_R)\right)$$

 $\Delta := Gain$

I(t):= Impurity of parent node

weighted avg. of child node impurity

 $I(t_L)$ and $I(t_R)$:= Impurity of left/right child nodes

n:= Number of observations in parent

 n_L and $n_R := Number of observations in left/right child$

$$\Delta = I(t) - \left(\frac{n_L}{n}I(t_L) + \frac{n_R}{n}I(t_R)\right)$$

Larger Gain →More pure branches

 $\Delta := Gain$

I(t):= Impurity of parent node

 $I(t_L)$ and $I(t_R)$:= Impurity of left/right child nodes

n:= Number of observations in parent

 n_L and $n_R := Number of observations in left/right child$

$$\Delta = I(t) - \left(\frac{n_L}{n}I(t_L) + \frac{n_R}{n}I(t_R)\right)$$

When entropy is used, this difference in entropy is called *Information Gain*.

(For more information, see Tom Carter's slides at http://astarte.csustan.edu/~tom/SFI-CSSS/2005/info-lec.pdf)

$$\Delta = I(t) - \left(\frac{n_L}{n}I(t_L) + \frac{n_R}{n}I(t_R)\right)$$

$$I(t) = Gini(t) = 1 - \sum_{i=1}^{c} [p(i \mid t)]^{2}$$

Example: Comparing 2 splits with Gain,

Impurity Measure Gini

Yes: 60

No: 40

 $\Delta = I(t) - \left(\frac{n_L}{n}I(t_L) + \frac{n_R}{n}I(t_R)\right)$

Yes: 60

No: 40

 $Age{<}20$

Yes: 30

No: 20

Yes: 30

Age≥20

No: 20

Age<18

Yes: 40

No: 10

Age≥18

Yes: 20

No: 30

$$I(t) = Gini(t) = 1 - \sum_{i=1}^{c} [p(i \mid t)]^{2}$$

$$I(t) = 1 - \left[\left(\frac{60}{100} \right)^2 + \left(\frac{40}{100} \right)^2 \right] = 0.48$$

$$I(t) = Gini(t) = 1 - \sum_{i=1}^{c} [p(i \mid t)]^{2}$$

$$I(t_L) = 1 - \left[\left(\frac{30}{50} \right)^2 + \left(\frac{20}{50} \right)^2 \right] = 0.48$$

$$I(t) = Gini(t) = 1 - \sum_{i=1}^{c} [p(i \mid t)]^{2}$$

$$\Delta = 0.48 - \left(\frac{50}{100}0.48 + \frac{50}{100}0.48\right) = 0$$

Example: Comparing 2 splits with Gain,

Yes: 60 No: 40

Age < 20 $Age \ge 20$

Yes: <u>30</u>

No: 20

Yes: 30

No: 20

Age<18

Yes: 40

No: 10

Age≥18

Yes: 20

No: 30

$$I(t) = Gini(t) = 1 - \sum_{i=1}^{c} [p(i \mid t)]^{2}$$

$$I(t) = 1 - \left[\left(\frac{60}{100} \right)^2 + \left(\frac{40}{100} \right)^2 \right] = 0.48$$

$$I(t) = Gini(t) = 1 - \sum_{i=1}^{c} [p(i \mid t)]^{2}$$

$$I(t_R) \neq 1 - \left[\left(\frac{20}{50} \right)^2 + \left(\frac{30}{50} \right)^2 \right] = 0.48$$

Yes: 60
No: 40

Age
$$< 20$$
Age ≥ 20

Age ≥ 20

Yes: 30
No: 20

Age ≥ 18

Yes: 30
No: 20

 $I(t) = Gini(t) = 1 - \sum_{i=0}^{c} [p(i \mid t)]^2$

Yes: 60
No: 40

Age ≥ 18

Yes: 20
No: 30

$$\Delta \neq 0.48 - \left(\frac{50}{100}0.32 + \frac{50}{100}0.48\right) = 0.08$$

So the split on the right has a higher gain and is thus the better split

Creating the tree

- Compute the gain for all possible splits and select the best one.
- Repeat process recursively until some stopping condition is met
 - No splits meet some minimum Gain
 - All leaves have some minimum number of observations
 - A stopping condition is a way of *prepruning* the tree
- Prune Tree
 - Generally difficult to choose the right thresholds in prepruning
 - Can grow a larger tree and prune back branches in supervised fashion. (Essentially picking the threshold after the fact.)

Pruning a Decision Tree

- Simplifies the model
 - Occam's razor law of parsimony
 - "Plurality is not to be posited without necessity" (Duns Scotus 1290)
- Prevents overfitting the training data
 - An accurate model on training: one bin for each leaf! #TerribleIdea
- Simply remove leaves/nodes in a bottom-up fashion, cutting splits with lowest gain first, while optimizing performance on validation data

Viya Demo 1

Telco Customer Churn

https://www.kaggle.com/blastchar/telco-customer-churn

Problem Introduction

Goal: Predict behavior to retain customers. Analyze all relevant customer data and develop focused customer retention programs.

The data set includes information about:

- Customers who left within the last month (and customers who did not)
 - the **target column** is called **Churn**
- Services that each customer has signed up for phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies
- Customer **account information** tenure as a customer, contract, payment method, paperless billing, monthly charges, and total charges
- **Demographic info** about customers gender, age range, and if they have partners and dependents

Variable Importance

Part II

CHAID and Regression Trees

CHAID

CHi-squared Automatic Interaction Detection

- 1980 PhD thesis by Gordon Kass
- Rather than using gain to determine splits, use chi-square tests!
- Analyze decision tree splits like we do contingency tables:

	Yes	No	Total
Age < 20	50	10	60
Age≥20	10	30	40
Total	60	40	100

$$\chi^2 = \sum_{cells} \frac{\text{(observed - expected)}^2}{\text{expected}}$$

CHAID

CHi-squared Automatic Interaction Detection

	Yes	No	Total
$ m Age{<}20$	50	10	60
Age≥20	10	30	40
Total	60	40	100

$$\chi^2 = \sum_{cells} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

Larger χ^2 statistic \rightarrow Smaller p-value \rightarrow Stronger relationship

only b/c sample size is constant in comparison at a given parent node!

CHAID

CHi-squared Automatic Interaction Detection

	Yes	No	Total
$ m Age{<}20$	50	10	60
Age≥20	10	30	40
Total	60	40	100

$$\chi^2 = \sum_{cells} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

Larger χ^2 statistic \rightarrow Smaller p-value \rightarrow Stronger relationship

Uses **logworth** to choose a split: $logworth(p) = -log_{10}(p)$

Logworth

 $logworth(p) = -\log_{10}(p)$

Tells us approx # of decimal places of our p-value.

Examples:

- $logworth(0.001) = -log_{10}(0.001) = -(-3) = 3.$
- logworth(0.0001) = 4
- logworth(0.0004) is between 3 and 4
 - $0.\underline{000}1 < 0.0004 < 0.\underline{00}1$
 - $\log_{10}(0.0001) < \log_{10}(0.0004) < \log_{10}(0.001)$
 - $-\log_{10}(0.0001) > -\log_{10}(0.0004) > -\log_{10}(0.001)$
 - $4 > -\log_{10}(0.0004) > 3$

LARGER LOGWORTH => BETTER SPLIT.

Kass Adjustments (i.e. Bonferroni Adjustments)

- Hypothesis testing to compare many variables at many potential splits. (Could be thousands of comparisons!)
- Beware the family-wise error rate!!
- Adjust the test significance to (α/m) where α is your desired significance level and m is number of tests.
- Equivalent to multiplying p-values by m and keeping α unchanged.

Kass Adjustments (i.e. Bonferroni Adjustments)

Suppose we compare Age (interval) with $Insurance\ Status$ (binary).

No Adjustment

- best p-value for Age is **0.01** and occurs when splitting at Age < 20, $Age \ge 20$
- p-value for *Insurance Status* is **0.05**

Pick $Age < 20, Age \ge 20$ as the splitting criterion.

Bonferroni Adjustment

- Age had 51 unique values (50 possible splits)
- Insurance Status had 1
- Not fair to compare these p-values! In 50 tests, using **one** with a p-value of 0.01 is not convincing!
- Adjust p-values by multiplying by number of tests:
 - Age: $(0.01)*50 = \mathbf{0.5}$
 - Insurance Status: (0.05)*1 = 0.05

Pick
Insurance Status
as splitting criterion.

Decision Tree Boundaries

Decision Tree Boundaries

Decision Tree Response Surface

(Building with legos - no diagonals!)

Regression Trees

Same thing, but with continuous target variables

Regression Tree Model

Regression Tree Model Creation

Determining Splits

- Entropy/Gini no longer make sense for continuous target
- Instead:
 - Reduce Average Squared Error (i.e. variance since prediction is mean of observations in leaf)

$$\sum_{i=1}^{N_t} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N_t} (y_i - \bar{y}_i)^2 = Var(\mathbf{y}) \text{ within node}$$

- Or Maximize logworth using p-value from an F-test
 - Testing whether means (predicted value) of leaves is different
 - (Same as a t-test for difference of means in binary case)
 - Think ANOVA overall F-test: are any of these means different?

Regression Tree Response Surface

(Building with legos - no diagonals!)

Advantages of tree models

- 1. Explainability
- 2. Predicted probability/response has **meaning** in training set
- 3. Can handle missing values

Alternatively via **surrogate splits**: designate an alternative variable split if the given variable is missing. Surrogate splits are chosen in a way that they split the population in the most similar fashion to the current split (often use a highly correlated variable).

Advantages of tree models

- 1. Explainability
- 2. Predicted probability/response has **meaning** in training set
- 3. Can handle missing values
- 4. Can be used for variable selection
- 5. Great for **ensembles**(basis for Random Forests and Gradient Boosting)
- 6. No assumptions to verify
- 7. Generally immune to scale of input vars/standardization (less effort in data pre-processing)
- 8. Generally **immune to the effect of outliers** or high leverage observations

Disadvantages of tree models

- 1. Simplistic Regression/Decision Surface (non-smooth)
- 2. All variables forced to interact
 - a. Only the top split acts independently
 - b. Inefficient
- 3. **Greedy** Algorithms
 - a. Struggle in the presence of many variables
 - b. Cannot return the globally optimal tree
- 4. Can be **unstable** (sensitive to small changes in input) both when training the model *and* when making predictions. (*think*: sides of 'lego buildings' on the response surface)

Viya Demo 2

TelcoChurn using Tasks in SAS Studio

Viya Demo 3

Breast Cancer Malignancy

Viya Demo

Submit Code:

cas;
caslib _all_ assign;

You will repeat this step EVERY time you use Viya to load the Public library!

Identifying Malignant Tumors

Change target attribute to categoric variable (split into training/validation)

Create a decision tree and set the

Autotune Function

Stack Display

Additional Reference Slides

The K-S Statistic

Kolmogorov-Smirnov (KS) Statistic

Kolmogorov-Smirnov (KS) Statistic

