
Gradient
Boosting

Stochastic Gradient Boosting, XGBoost,
LiteGBM, CatBoost

Gradient Boosting Machines

(Jerome H. Friedman 1999-2001)

Football Strategy

Most models shoot for the
endzone on a single play.

GBMs play a running game.

Football Strategy

Football Strategy

Football Strategy

Football Strategy

Build a simple model, , trying to predict a target y
 
Don’t even try to get very close (again, simple model). Error on
is expected to be large. (i.e. try a running play).

𝑓1(𝑥)

𝑓1(𝑥)

Gradient Boosting
Overview

actual value
(initial yards
to endzone)

error
(remaining
distance to
endzone)

modeled value
(distance of run)

y = f1(x) + ϵ1

Build a simple model, , trying to predict a target y
(i.e. try a running play)

𝑓1(𝑥)

Gradient Boosting
Overview

y = f1(x) + ϵ1

f1(x)

y

ϵ1

Now, let’s try to predict that error with another simple
model, (Another running play) 𝑓2(𝑥) .

Gradient Boosting
Overview

Error from the
first model
(line of scrimmage
to endzone)

predicting the
residual,
(yardage from
second run)

𝜖1

error
(remaining
distance to
endzone)

ϵ1 = f2(x) + ϵ2

Now, let’s try to predict that error with another simple
model, (Another running play) 𝑓2(𝑥) .

Gradient Boosting
Overview

ϵ1 = f2(x) + ϵ2

f1(x)

y

ϵ1

f2(x) ϵ2

Gradient Boosting
Overview

Continue to add model after model, each one predicting the
residuals from the previous round.

original
modeled
value

Predicts the
residual, 𝜖1

predicting
the residual,

 𝜖k−1

presumably very
small
error

y = f1(x) + f2(x) + … + fk(x) + ϵ

• At each round, we create a model to predict the residual
from the previous round.

• If we’re just going to continue to model error until it
vanishes, what’s the obvious problem we should be aware
of?

Gradient Boosting
Summary

Gradient Boosting and
Overfitting

Gradient Boosting uses (at least) two forms of regularization to
prevent overfitting:

1. A learning rate to effectively lessen the step-size taken at each step. Often
called eta, 0< < 1

•

• Smaller values of eta => Less prone to overfitting

• eta = 1 => no regularization

2. The number of trees/classifiers used in the prediction

• Larger number of trees => More prone to overfitting

• Choose a number of trees by observing out-of-sample error  

3. Other regularization parameters (λ, ɣ, L2) have been introduced to most
packages with the aim of reducing tendency to overfit.

𝜂
𝑦 = 𝑓1(𝑥) + 𝜂 𝑓2(𝑥) + 𝜂 𝑓3(𝑥) + … + 𝜂 𝑓𝑘(𝑥) + 𝜖𝑘

fi(x)

Gradient Boosted Trees
Gradient boosting yields a additive ensemble model

• There is no voting or averaging of individual models.
• The predictions from each model are summed together

for final prediction.

The key to gradient boosting is using “weak learners”
• Typically simple, shallow decision/regression trees
• Alone, make poor predictions but ensembled in this

additive fashion provide superior results

The number atop each graph is the number of trees (stumps) in the gbm ensemble. The
blue line is the true relationship y=sin(x)+ . As the number of trees grows, the model
approaches the true relationship. ht Bradley Boehmke & Brandon Greenwell

ϵ

Gradient Descent
• Gradient Descent (Cauchy 1847) is a method that iteratively update

parameters in order to minimize a loss (error) function by moving in
the direction of steepest descent.

• Gradient Descent involves a learning rate (step-size)

ht Bradley Boehmke & Brandon Greenwell

 - The Learning Rate𝜂

ht Bradley Boehmke & Brandon Greenwell

Stochastic Gradient
Descent

• Not all loss functions are convex (bowl-shaped)
• Local minima, plateaus on loss functions make gradient

descent difficult.

• Stochastic gradient descent attempts to solve this
problem by randomly sampling a fraction of the training
observations for each tree in the ensemble.

• Makes the algorithm faster and more reliable, but may
not always find the global minimum.

Gradient Boosting
Summary

Advantages
• Exceptional model – one of most accurate available, generally superior to Random

Forests when properly tuned and trained

• Can provide information on variable importance for the purposes of variable
selection

Disadvantages
• Model lacks interpretability in the classical sense aside from variable importance
• The trees must be trained sequentially so computationally this method is

slower than Random Forest
• (At least one) extra tuning parameter over Random Forests, the regularization or

shrinkage parameter, eta.
• Can be hard to optimize tuning parameters (time/complexity)
• Unlike random forests, GBM accuracy is much more sensitive to

hyperparameters 
(small changes in settings => large changes in model accuracy)

Training a GBM
There is no secret recipe, grid search is typically infeasible so
tuning parameters one at a time is common practice.
 
One suggested approach is as follows:
1. Start with a relatively high learning rate. Generally the default value of 0.1 works,

range of 0.05–0.2 is often good
2. Determine the optimal number of trees for this learning rate
3. Fix tree-specific hyper parameters (depth/column sample/etc) and tune learning rate

and assess speed vs. performance
4. Tune tree-specific parameters for decided learning rate
5. Once tree-specific parameters have been found, lower the learning rate to see if

improvements result.

Recommended
Implementations

GBM in SASViya

LiteGBM (Ke et al. 2017)

XGBoost

CatBoost

LiteGBM is generally faster than XGBoost with similar performance. CatBoost, LiteGBM and XGBoost differ in their
treatment of categorical input variables, the way splits are searched, and whether they use standard or oblivious decision
trees

Extreme Gradient Boosting
(XGBoost)

“Extreme gradient boosting (XGBoost) is an optimized distributed gradient
boosting library that is designed to be efficient, flexible, and portable across

multiple languages (Chen and Guestrin 2016).”

Provides a few advantages over GBM:

1. Regularization: additional regularization parameters Gamma, L1, and L2 penalties
2. Early Stopping: settings to stop model assessment when additional trees offer no

improvement
3. Parallel Processing: procedures to support GPU and Spark compatibility allowing for

distributed processing. Doesn’t fix problem that trees must be trained sequentially.
4. Loss Functions: flexibility to define custom objective functions and choose from a variety of

existing loss functions
5. Different Base Learners: allows generalized linear models as well as tree-based ensembles.
6. Multiple Languages: XGBoost implementations for R, Python, Julia, Scala, Java, C++

Variable Importance in
XGBoost

XGBoost provides 3 built-in measures of variable
importance:
1. Gain: equivalent to metric in Random Forests, most

common measurement of importance in overall model.
2. Coverage: measures the relative number of observations

influenced by this feature
3. Frequency: percentage of splits in the whole ensemble

that use this feature.

LightGBM
LightGBM employs novel Gradient-based One-Side Sampling (GOSS)

• Points with large gradients (read: large residuals) are more important
for finding the optimal split point.

• GOSS uses all points with large gradients, and randomly samples
points with small gradients.

• Can lead to a drastic reduction in the number of points used, hence
the speed up.

CatBoost
Selling point: Unique treatment of categorical inputs

• Clever mechanism for target-level encoding and feature combination
• “Oblivious trees” as base predictors: same splitting criterion used

across an entire level of the tree.
• Fast training on GPU
• Original paper showed improvement in computation time AND

accuracy over XGBoost and LiteGBM.

An Introduction to “Old-fashioned” Boosting 
(Adaboost)

The original notion of boosting a model looked quite different from
the modern approach outlined in first half of slidedeck. 

For Self Study

Boosting Overview
➢ Like bagging, going to draw a sample of the observations

from our data with replacement
➢ Unlike bagging, the observations not sampled randomly
➢ Boosting assigns a weight to each training observation

and uses that weight as a sampling distribution
➢ Higher weight observations more likely to be chosen.

➢ May adaptively change that weight in each round
➢ The weight is higher for examples that are harder to

classify

Bagging vs. Boosting

0

0.0225

0.045

0.0675

0.09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Probability of an observation being chosen for the sample
at each round

Observation number Observation number

Bagging vs. Boosting
Points with higher sampling
probability were harder to predict
accurately.

Want a chance to improve
predictions sequentially

Only trying to create
variability in the models by
using training set variation.

Ensemble models built
simultaneously, no time to
evaluate accuracy.

0

0.0225

0.045

0.0675

0.09

1 3 5 7 9 11 13 15 17 19
0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15 17 19

Boosting Example
➢ Same dataset used to illustrate bagging
➢ Boosting typically requires fewer rounds of sampling and

classifier training.
➢ Start with equal weights for each observation
➢ Update weights each round based on the classification

errors

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 1 1 1 -1 -1 -1 -1 1 1 1

input variable

target

Boosting Example

Boosting: 
Weighted Ensemble

➢ Unlike Bagging, Boosted Ensembles usually weight the
votes of each classifier by a function of their accuracy.

➢ If a classifier gets the higher weight observations wrong, it
has a higher error rate.

➢ More accurate classifiers get higher weight in the
prediction.

Errors made: First 3 observations

Errors made: Middle 4 observations

Errors made: Last 3 observations

Boosting:  
Classifier weights

Errors made: First 3 observations

Errors made: Middle 4 observations

Errors made: Last 3 observations

Boosting:  
Classifier weights

Lowest weighted error.
Highest weighted model.

Boosting:  
Weighted Ensemble

Classifier Decision Rules and Classifier Weights

Weight

Individual Classifier Predictions and Weighted Ensemble Predictions

Boosting:  
Weighted Ensemble

Classifier Decision Rules and Classifier Weights

Weight

Individual Classifier Predictions and Weighted Ensemble Predictions

5.16 =
-1.738+2.7784+4.1195

AdaBoost Details: The Classifier Weights

➢ Let be the weight of observation j entering into present
round.

➢ Let if observation j is misclassified, 0 otherwise

➢ The error of the classifier this round is

➢ The voting weight for the classifier this round is then

𝑤𝑗

𝑚𝑗 = 1

𝜖𝑖 =
1
𝑁

𝑁

∑
𝑗=1

𝑤𝑗𝑚𝑗

𝛼𝑖 =
1
2

ln(1 − 𝜖𝑖

𝜖𝑖)

AdaBoost Details: Updating observation Weights

To update the observation weights from the current round
(round) to the next round (round):

 if observation j was correctly classified

 if observation j was misclassified

The new weights are then normalized to sum to 1 so they
form a probability distribution.

𝑖 𝑖 + 1

𝑤(𝑖+1)
𝑗 = 𝑤𝑖

𝑗𝑒
−𝛼𝑗

𝑤(𝑖+1)
𝑗 = 𝑤𝑖

𝑗𝑒
𝛼𝑗

