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Gradient Boosting Machines

(Jerome H. Friedman 1999-2001)



Football Strategy

Most models shoot for the 
endzone on a single play. 

GBMs play a running game.
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Build a simple model, , trying to predict a target y 
 
Don’t even try to get very close (again, simple model). Error on  
is expected to be large.  (i.e. try a running play). 

𝑓1(𝑥)

𝑓1(𝑥)
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actual value
(initial yards 
to endzone)

error
(remaining 
distance to 
endzone)

modeled value
(distance of run)

y = f1(x) + ϵ1



Build a simple model, , trying to predict a target y 
(i.e. try a running play) 

𝑓1(𝑥)
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y = f1(x) + ϵ1

f1(x)

y

ϵ1



Now, let’s try to predict that error with another simple 
model,  (Another running play) 𝑓2(𝑥) .
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Error from the 
first model
(line of scrimmage 
to endzone)

predicting the 
residual, 
(yardage from 
second run)

𝜖1

error
(remaining 
distance to 
endzone)

ϵ1 = f2(x) + ϵ2



Now, let’s try to predict that error with another simple 
model,  (Another running play) 𝑓2(𝑥) .
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ϵ1 = f2(x) + ϵ2

f1(x)

y

ϵ1

f2(x) ϵ2
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Overview

Continue to add model after model, each one predicting the 
residuals from the previous round. 

original 
modeled 
value

Predicts the 
residual,  𝜖1

predicting 
the residual, 

 𝜖k−1

presumably very 
small  
error

y = f1(x) + f2(x) + … + fk(x) + ϵ



• At each round, we create a model to predict the residual 
from the previous round. 

• If we’re just going to continue to model error until it 
vanishes, what’s the obvious problem we should be aware 
of?

Gradient Boosting 
Summary



Gradient Boosting and 
Overfitting

Gradient Boosting uses (at least) two forms of regularization to 
prevent overfitting: 

1. A learning rate to effectively lessen the step-size taken at each step. Often 
called eta, 0<  < 1 

•  

• Smaller values of eta => Less prone to overfitting 

• eta = 1 => no regularization 

2. The number of trees/classifiers  used in the prediction 

• Larger number of trees => More prone to overfitting 

• Choose a number of trees by observing out-of-sample error  

3.  Other regularization parameters (λ, ɣ, L2) have been introduced to most 
packages with the aim of reducing tendency to overfit.

𝜂
𝑦 = 𝑓1(𝑥) + 𝜂 𝑓2(𝑥) + 𝜂 𝑓3(𝑥) + … + 𝜂 𝑓𝑘(𝑥) +  𝜖𝑘

fi(x)



Gradient Boosted Trees
Gradient boosting yields a additive ensemble model  

• There is no voting or averaging of individual models.  
• The predictions from each model are summed together 

for final prediction. 

The key to gradient boosting is using “weak learners” 
• Typically simple, shallow decision/regression trees 
• Alone, make poor predictions but ensembled in this 

additive fashion provide superior results



The number atop each graph is the number of trees (stumps) in the gbm ensemble. The 
blue line is the true relationship y=sin(x)+ .  As the number of trees grows, the model 
approaches the true relationship.        ht  Bradley Boehmke & Brandon Greenwell

ϵ



Gradient Descent
• Gradient Descent (Cauchy 1847) is a method that iteratively update 

parameters in order to minimize a loss (error) function by moving in 
the direction of steepest descent.  

• Gradient Descent involves a learning rate (step-size) 

ht  Bradley Boehmke & Brandon Greenwell



 - The Learning Rate𝜂

ht  Bradley Boehmke & Brandon Greenwell



Stochastic Gradient 
Descent

• Not all loss functions are convex (bowl-shaped) 
• Local minima, plateaus on loss functions make gradient 

descent difficult. 

• Stochastic gradient descent attempts to solve this 
problem by randomly sampling a fraction of the training 
observations for each tree in the ensemble. 

• Makes the algorithm faster and more reliable, but may 
not always find the global minimum.



Gradient Boosting 
Summary

Advantages 
• Exceptional model – one of most accurate available, generally superior to Random 

Forests when properly tuned and trained 

• Can provide information on variable importance for the purposes of variable 
selection 

Disadvantages 
• Model lacks interpretability in the classical sense aside from variable importance 
• The trees must be trained sequentially so computationally this method is 

slower than Random Forest 
• (At least one) extra tuning parameter over Random Forests, the regularization or 

shrinkage parameter, eta. 
• Can be hard to optimize tuning parameters (time/complexity) 
• Unlike random forests, GBM accuracy is much more sensitive to 

hyperparameters 
(small changes in settings => large changes in model accuracy)



Training a GBM
There is no secret recipe, grid search is typically infeasible so 
tuning parameters one at a time is common practice. 
 
One suggested approach is as follows: 
1.  Start with a relatively high learning rate. Generally the default value of 0.1 works, 

range of 0.05–0.2 is often good 
2.  Determine the optimal number of trees for this learning rate 
3.  Fix tree-specific hyper parameters (depth/column sample/etc) and tune learning rate 

and assess speed vs. performance 
4.  Tune tree-specific parameters for decided learning rate 
5.  Once tree-specific parameters have been found, lower the learning rate to see if 

improvements result. 



Recommended 
Implementations

GBM in SASViya 

LiteGBM (Ke et al. 2017) 

XGBoost 

CatBoost 

LiteGBM is generally faster than XGBoost with similar performance. CatBoost, LiteGBM and XGBoost differ in their 
treatment of categorical input variables, the way splits are searched, and whether they use standard or oblivious decision 
trees



Extreme Gradient Boosting  
(XGBoost)

“Extreme gradient boosting (XGBoost) is an optimized distributed gradient 
boosting library that is designed to be efficient, flexible, and portable across 

multiple languages (Chen and Guestrin 2016).” 

Provides a few advantages over GBM: 

1. Regularization: additional regularization parameters Gamma, L1, and L2 penalties 
2. Early Stopping: settings to stop model assessment when additional trees offer no  

improvement 
3. Parallel Processing: procedures to support GPU and Spark compatibility allowing for 

distributed processing. Doesn’t fix problem that trees must be trained sequentially. 
4. Loss Functions: flexibility to define custom objective functions and choose from a variety of 

existing loss functions 
5. Different Base Learners:  allows generalized linear models as well as tree-based ensembles. 
6. Multiple Languages: XGBoost implementations for R, Python, Julia, Scala, Java, C++



Variable Importance in 
XGBoost

XGBoost provides 3 built-in measures of variable 
importance: 
1. Gain: equivalent to metric in Random Forests, most 

common measurement of importance in overall model.  
2. Coverage: measures the relative number of observations 

influenced by this feature 
3. Frequency: percentage of splits in the whole ensemble 

that use this feature.



LightGBM
LightGBM employs novel Gradient-based One-Side Sampling (GOSS)  

• Points with large gradients (read: large residuals) are more important 
for finding the optimal split point.  

• GOSS uses all points with large gradients, and randomly samples 
points with small gradients.  

• Can lead to a drastic reduction in the number of points used, hence 
the speed up.  



CatBoost
Selling point: Unique treatment of categorical inputs  

• Clever mechanism for target-level encoding and feature combination 
• “Oblivious trees” as base predictors: same splitting criterion used 

across an entire level of the tree. 
• Fast training on GPU 
• Original paper showed improvement in computation time AND 

accuracy over XGBoost and LiteGBM.



An Introduction to “Old-fashioned” Boosting 
(Adaboost)

The original notion of boosting a model looked quite different from 
the modern approach outlined in first half of slidedeck. 

For Self Study



Boosting Overview
➢ Like bagging, going to draw a sample of the observations 

from our data with replacement 
➢ Unlike bagging, the observations not sampled randomly 
➢ Boosting assigns a weight to each training observation 

and uses that weight as a sampling distribution 
➢ Higher weight observations more likely to be chosen. 

➢ May adaptively change that weight in each round 
➢ The weight is higher for examples that are harder to 

classify



Bagging   vs.   Boosting
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Bagging   vs.   Boosting
Points with higher sampling 
probability were harder to predict 
accurately.  

Want a chance to improve 
predictions sequentially

Only trying to create 
variability in the models by 
using training set variation.  

Ensemble models built 
simultaneously, no time to 
evaluate accuracy.
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Boosting Example
➢ Same dataset used to illustrate bagging 
➢ Boosting typically requires fewer rounds of sampling and 

classifier training. 
➢ Start with equal weights for each observation 
➢ Update weights each round based on the classification 

errors

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 1 1 1 -1 -1 -1 -1 1 1 1

input variable

target



Boosting Example



Boosting: 
Weighted Ensemble

➢ Unlike Bagging, Boosted Ensembles usually weight the 
votes of each classifier by a function of their accuracy. 

➢ If a classifier gets the higher weight observations wrong, it 
has a higher error rate. 

➢ More accurate classifiers get higher weight in the 
prediction.



Errors made: First 3 observations

Errors made: Middle 4 observations

Errors made: Last 3 observations

Boosting:  
Classifier weights



Errors made: First 3 observations

Errors made: Middle 4 observations

Errors made: Last 3 observations

Boosting:  
Classifier weights

Lowest weighted error. 
Highest weighted model.



Boosting:  
Weighted Ensemble

Classifier Decision Rules and Classifier Weights

Weight

Individual Classifier Predictions and Weighted Ensemble Predictions



Boosting:  
Weighted Ensemble

Classifier Decision Rules and Classifier Weights

Weight

Individual Classifier Predictions and Weighted Ensemble Predictions

5.16 = 
-1.738+2.7784+4.1195



AdaBoost Details: The Classifier Weights

➢ Let  be the weight of observation j entering into present 
round. 

➢ Let if observation j is misclassified, 0 otherwise 

➢ The error of the classifier this round is 

➢ The voting weight for the classifier this round is then 

𝑤𝑗

𝑚𝑗 = 1 

𝜖𝑖 =  
1
𝑁

𝑁

∑
𝑗=1

𝑤𝑗𝑚𝑗

𝛼𝑖 =  
1
2

ln( 1 − 𝜖𝑖

𝜖𝑖 )



AdaBoost Details: Updating observation Weights

To update the observation weights from the current round 
(round ) to the next round (round ): 

      if observation j was correctly classified 

        if observation j was misclassified 

The new weights are then normalized to sum to 1 so they 
form a probability distribution.

𝑖 𝑖 + 1

𝑤(𝑖+1)
𝑗 = 𝑤𝑖

𝑗𝑒
−𝛼𝑗

𝑤(𝑖+1)
𝑗 = 𝑤𝑖

𝑗𝑒
𝛼𝑗


