Introduction to Data Mining and Machine Learning

Shaina Race, PhD
Institute for Advanced Analytics
North Carolina State University

Preparing for Model Validation

Splitting into Training/Validation/Test Sets Deciding on Cross Validation

Data Preprocessing

• When you **first** receive your data, **you'll explore** for distributions/outliers, and missing values.

• Before you look at any relationships between input variables and target variables, you should split into training, validation and test samples.

(Or decide on Cross-Validation / Testing)

The Problem of Overfitting

• Left unchecked, models will capture nuances of the data on which they're built (the training data).

• When these "patterns" do not hold up in validation or test data, the model performance suffers. We say the model does not generalize well. The model is overfit.

The Problem of Overfitting

- Error on the training data does not predict future performance.
- Complexity can undermine model's performance on future data.

The Problem of Overfitting

- Error on the training data does not predict future performance.
- Complexity can undermine model's performance on future data.

The Bias-Variance Tradeoff

- Bias = underfitting
 - The modeled value's distance from "truth".
 - Want a model with low bias.
- Variance = overfitting
 - The model parameters will vary greatly on different training samples.
 - Want a model with low variance.

The concepts are inversely related:

Lower Bias → Higher Variance

Lower Variance \rightarrow Higher Bias.

(Hence the term "Bias-Variance **Tradeoff**")

Training/Validation/Test

- Want to make sure your models are generalizable
 - Not just good models of training sample.
 - Can predict equally well on out-of-sample data.
- Split into Training + Validation + Test sets is necessary
 - Somewhere around 2/3 training, 1/3 validation/test is typical.
 - Lots of data? 50-40-10 split
 - Not so much data? 70-20-10 split
 - Not enough data? Use Cross-Validation

Training/Validation

• Use the Training set to build your model.

• Evaluate and tune the model based on how it performs on the validation data

• Never report accuracy metrics from training set!

Testing

• Continually adapting a model to perform better on validation data essentially trains the model to the validation data.

• Once you've chosen a final model, re-run it on (training+validation) data to finalize your parameters, and report accuracy on test data.

• Before deploying that final model to the customer, you can update parameters using **entire** dataset.

10-Fold Cross Validation:

Final Accuracy = Average(Round 1, Round 2, ...)

K-fold Cross-Validation Summary

- Divide your data into k equally-sized samples (folds)
 - k=10 or k=100 are common.
 - Depends on time complexity of model and size of the dataset!
- For each fold, train the model on all other data, using that fold as a validation set
- Record measures of error/goodness-of-fit
- In the end, report summary of error/goodness-of-fit measure (average, std. deviation etc)
- Use that report summary to choose a model

Cross-Validation

- Can use cross-validation in any situation.
- Will be necessary if you do not have **sufficient** observations to split into training/validation/test

- What is **sufficient**? It depends!
 - Rule of thumb: AT LEAST 10 observations per input variable in training set
 - Don't Forget: For categorical variables each level counts!

Leave-One-Out Cross-Validation (Jackknife)

- *n*-fold cross validation where *n* is number of obs.
- Use only one observation as the validation-set
- Repeat for every observation in the dataset

• Can be extremely time consuming! Only use when necessary (very small sample sizes)

Dealing with Transactional Data

Moving from Long to WIDE

Transactional Data

Transactional data is **long** and has many rows per modeling observation.

CustID	Date	Items	Cost
2	10/10	10	100
2	10/12	5	20
2	12/4	1	2
9	10/03	25	46
9	10/04	5	12
12	10/01	20	300
12	12/27	20	300
12	12/28	21	301

Transactional Data

- Typically, the solution for modeling with transactional data is to "roll it up" so it has one row per observation modeled.
- It is transformed from long to wide
- In this case, we'd have 3 observations (customers)
- One big group by SQL query

Transactional Data

A <u>subset</u> of columns we might consider in the process:

- 1. ID
- 2. Date of first transaction
- 3. Date of last transaction
- 4. Total number of transactions
- 5. Average time between transactions
- 6. Maximum number of items purchased
- 7. Average number of items purchased
- 8. Minimum number of items purchased
- 9. Std Deviation of number of items purchased
- 10. Maximum cost of items purchased
- 11. Average cost of items purchased
- 12. Minimum cost of items purchased
- 13. Stand. Deviation of cost of items purchased
- 14. Slope of regression line of cost over time

Data Cleaning Handling Missing Values

Handling Missing Values

Missing Value Imputation

Imputation: Replacing missing values with a substitute value, typically a guess at what you think the value should have been.

★ i.e. falsifying records. making up data.

Imputing Missing Values

• Always Always create a binary flag = 1 indicating that the value has been imputed and include the flag in your model.

Obs.	Gender	Q1 Response	Obs.	Gender	Q1 Response	Q1 Flag
1	M	5	1	M	5	0
2	M	4	2	M	4	0
3	F	NA	3	F	3	1
4	M	1	4	M	1	0
5	F	NA	5	F	3	1

• Nonresponse might be an important indicator of target or relate to another variable.

Categorical Variables

- Option one: Create **new level** of variable as "**missing.**" (No flag necessary in this case.)
- Option two: Replace missing values with the mode.
- Option three: Try to **predict** the missing value using other attributes.
 - Decision trees, RandomForests, KNN methods popular for missing values (Coming Fall 2 & 3)
 - "Hotdeck imputation" PROC SURVERYIMPUTE method = hotdeck

Numeric Variables

- Option one: Replace missing values with the mean
- Option two: Replace missing values with the **median** (for skewed distributions).
- Option three: **Predict** the missing values using other attributes.
 - Multiple Regression or Regression Trees popular
- Option four: Discretize (bin) the numeric variable into categories and create 'missing' category.

Ordinal Variables

• Depends on the variable

- Likely to treat 'level of education' differently than 'Likert scale response'
- Use one of the options prescribed for numeric or categorical variables

More Sophisticated Approaches

- Previously mentioned approaches are simple but naïve.
- More sophisticated methods exist that are more complicated but principled.
- These will be **necessary** for statistical inference!

More Sophisticated Approaches

Numeric Variables

- Maximum Likelihood Imputation
 - EM Algorithm in R
 - PROC MI Default
- Multiple Imputation.
 - PROC MI and PROC MIANALYZE
 - MICE package in R

Categorical Variables

- Fully Efficient Fractional Imputation (FEFI)
 - PROC SURVEYIMPUTE default
 - FHDI package in R

Pay Attention!

- Blind imputation can potentially generate impossible or highly unlikely data
- For Example:
 - A 16 year old who makes \$80,000 a year
 - A male patient who is menopausal

So what should I DO?

It Depends!!

• Only the person closest to the data and to the problem can make these judgment calls!

• Can try several methods to see what works best.

• The binary flag indicating imputed value will show you if there is something special about missing values.

More Information for Self-Study

Variable Transformations

Variable Transformations

- Discretizing (Binning) Numeric Variables
 - Equal Width
 - Equal Depth
 - Supervised Binning
- Standardization and Normalization
 - Statistical Standardization
 - Range, MinMax Standardization
 - Considerations
- Log Transformation and Percent Change

Unsupervised Approach 1: Equal Width

Each bin has
the same width
in variable
values

Each bin has a different number of observations

Bin

Unsupervised Approach 2: Equal Depth

	△ Name	⊗ Team	nAtBat ▲
	Bochy, Bruce	San Diego	127
	Simmons, Ted	Atlanta	127
	Daulton, Darren	Philadelphia	138
	Spilman, Harry	San Francisco	143
-	Howell, Jack	California	151
	Speier, Chris	Chicago	155
	Porter, Darrell	Texas	155
	Dwyer, Jim	Baltimore	160
_	Meacham, Bobby	New York	161
	Willard, Jerry	Oakland	161
	Reed, Jeff	Minneapolis	165
	Rivera, Luis	Montreal	166
	Puhl, Terry	Houston	172
	O'Malley, Tom	Baltimore	181
	Daniels, Kal	Cincinnati	181
	Robidoux, Billy Jo	Milwaukee	181
	Beane, Billy	Minneapolis	,

Take percentiles of the population.

Each bin has the same number of observations.

Supervised Approach

• Use target variable info to 'optimally' bin numeric variables for prediction.

• Typically used in classification problems.

• Want bins that result in the most *pure* set of target classes.

Supervised Approach

Incom	Vehicle Color
15K	mixed
19K	brown
20K	mixed
50K	blue
55K	green
60K	blue
65K	blue
85K	green
150K	mixed
175K	red
995K	mixed

Binning Numeric Variables

Supervised Approach

• Decision tree methods can be helpful to create these bins.

• Also, weight of evidence

• More on these techniques later.

Standardization and Normalization

• Standardization in statistics (Z-score standardization) transform units to "number of standard deviations away from the mean":

$$\frac{x - \bar{x}}{\sigma_x}$$

- Avoid having variable with large values (e.g. income) dominate a calculation.
- Many other ways to standardize/normalize
 - Range Standardization: Divide by the range of the variable
 - MinMax Standardization: Subtract min. and divide by (max-min.)
 - Puts variable on a scale from 0 to 1
 - Divide by 2-norm, Divide by 1-norm, Divide by sum

Transformation Considerations

- Transformations change the nature of the data.
 - Ex: $x = \{1,2,3\}$ transform to $1/x = \{1,\frac{1}{2},\frac{1}{3}\}$
 - The sorting order of the observations reverses
 - Observations close to 0 will get **very** large
- Always consider the following questions:
 - Does the order of the data need to be maintained? (other code/documentation)
 - Does the transformation apply to all values, especially negative values and 0? (Think log(x) and 1/x)
 - What is the effect on values between 0 and 1?

Interpreting Logarithmic Transformations in Linear Models

Logarithm on Independent Variable

$$y = a \log(x)$$

1% increase/decrease in x implies y increases/decreases by 0.01a units

This interpretation only valid for changes of up to \pm - 20%

Example: Logarithm on Independent Variable

 $oil_consumption = 2 \cdot log(GDP)$

- 1% increase in GDP implies $0.01 \cdot 2 = 0.02$ <u>unit increase</u> in oil consumption.
- 5% decrease in GDP implies $0.05 \cdot 2 = 0.1$ <u>unit decrease</u> in oil consumption.

This interpretation only valid for changes of up to \pm - 20%

Logarithm on Dependent Variable

$$log(y) = a x$$

1 unit increase/decrease in x implies y increases/decreases by *a*%

This interpretation only valid for changes of up to \pm 20%

Example: Logarithm on Dependent Variable

$$log(oil\ consumption) = 2 \cdot GDP$$

- 1 <u>unit increase</u> in GDP implies 2% increase in oil consumption.
- 5 <u>unit decrease</u> in GDP implies 10% decrease in oil consumption.

This interpretation only valid for changes of up to \pm - 20%

Logarithm on Both Variables

$$\log(y) = a \log(x)$$

1% increase/decrease in x implies y increases/decreases by a%

This interpretation only valid for changes of up to \pm 20%

Example: Logarithm on both variables

More concrete example:

$$\log(\text{oil_consumption}) = 2 \cdot \log(\text{GDP})$$

- 1% increase in GDP implies 2% increase in oil consumption.
- 5% decrease in GDP implies 10% decrease in oil consumption.

This interpretation only valid for changes of up to \pm - 20%

Details for Logarithmic Interpretation

Why is it only valid for changes up to $\sim 20\%$?

Log Transformation and Percent Change

$$y = \alpha \log(x)$$

	\mathbf{r}	$\log(1+\mathrm{r})$
% change in x	-50%	-0.693
	-40%	-0.511
	-30%	-0.357
	-20%	-0.223
For an <i>r</i> percent increase in x,	0%	-0.105
what happens to y?	70	-0.051
1(-)	70	-0.020
$y = \alpha \log(x)$	Ó	0.000
$y' = \alpha \log(x(1+r))$	Ó	0.020
$y' = \alpha[\log(x) + \log(1 + r)]$)]	0.049
	%	0.095
so $y' - y = \alpha \log(1+r) \approx \alpha r$	%	0.182
	%	0.262
	%	0.336
	 %	0.405
	100%	0.693

Additive change in y for coefficient of 1.

Log Transformation and Percent Change

$$\log(y) = \alpha \log(x)$$

		$\log(1+r)$
% change in x	-50%	-0.693
For an <i>r</i> percent increase in <i>x</i> , what happens to y?) %	-0.511
)%	-0.357
)%	-0.223
$\log(y) = \alpha \log(x)$)%	-0.105
$\log(y') = \alpha \log(x(1+r))$	70	-0.051
$\log(y') = \alpha[\log(x) + \log(1+r)]$	(r)	-0.020
	Ó	0.000
so	þ	0.020
$\log(y') - \log(y) = \alpha \log(1+r) + \alpha \log(1$	$\approx \alpha r$	0.049
$\log\left(\frac{y'}{y}\right) = \alpha \log(1+r) \approx \alpha r$	%	0.095
	$\approx \alpha r$ %	0.182
$\log(1+r_{y}) \approx \alpha r$	%	0.262
$r_y \approx \alpha r$	%	0.336
	%	0.405
	0%	0.693

where r_{v} is percent increase in y.

Additive change in y for coefficient of 1.

So what should I DO?

It Depends!!

• Only the person closest to the data and to the problem can make these judgment calls!

• Can try several methods to see what works best.

• Transformations are typically either required to meet assumptions of a model, or something done in hindsight to improve performance of a given model.

SAS Viya Introduction

Submit Code:

cas;
caslib _all_ assign;

You will repeat this step EVERY time you use Viya to load the Public library!

SAS Viya Introduction

Explore Target Variable

Scroll up and drag variable to chart.

Change Chart to %

Explore/Transform

Log Transform

Side-by-side Comparison

Drag created variable to the right of the previous histogram. Make sure the spot is highlighted for placement.

Log Transform

Create a new page

VS_BANK_PARTITION

Silter

Data

♣ New data item

I_IIIII7 IVIOIILIIS JIIICE LASL FUICIIASE

√a log rfm3 Avg Sales past 3 years Di...

♦ logi_rfm1 Average Sales Past ... ¥

logi_rfm10 Clogi_rfm7 Count Prchsd Past 3 Years Dir Promo

♦ logi_rfm11 Count Direct Prom...
¥

♦ logi_rfm12 Customer Tenure

♦ logi_rfm2 Average Sales Lifeti...

♦ logi_rfm3 Avg Sales Past 3 Ye...
¥

♦ logi_rfm4 Last Product Purcha... ¥

♦ logi_rfm5 Count Purchased Pa... ¥

♦ logi_rfm6 Count Purchased Lif...

♦ logi_rfm7 Count Prchsd Past 3...

♦ logi_rfm8 Count Prchsd Lifeti...

♦ logi_rfm9 Months Since Last P...

Visualize Multiple Relationships at once

Drag all variables to chart.

Visualize Multiple Relationships at once

Group by Target Values

Add Data Item

- Filter
- Account ID 1.1M
- category 1 Account Activity Level 3
- rategory 2 Customer Value Level 5
- tgt Binary New Product 2

tgt Binary New Foduct - 2

Validation Partition - 2

Explore with Logistic Reg.

Imputation Task

Imputation Task


```
Code
       Log
 1
    /*
       Task code generated by SAS® Studio 5.
     * Generated on '9/29/19, 2:40 PM'
     * Generated by 'slrace'
     * Generated on server 'sasviya1'
     * Generated on SAS platform 'Linux LIN
     * Generated on SAS version 'V.03.04M0P0
     * Generated on browser 'Mozilla/5.0 (Ma
     * Generated on web client 'https://sasv
11
12
     */
13
    ods noproctitle;
14
15
    proc varimpute data=PUBLIC.VS BANK PARTI
```