Review Jeopardy

Blue vs. Orange

How this works

- For the Jeopardy and Double Jeopardy rounds, each question has a dollar amount, *D*.
- Suppose that the proportion of students answering the question correctly is p.
- Then the amount earned by the class for that question is pD.

Jeopardy Round

Transaction ID	Items
10001	Bread, Juice
10002	Diapers, Beer, Eggs, Formula
10003	Milk, Diapers, Bread , Formula
10004	Juice, Diapers, Milk, Eggs
10005	Soda, Milk, Eggs, Bread
10006	Formula, Juice, Diapers, Bread

What is the *support* of the rule Bread —> Juice?

- A) 33.3%
- B) 20%
- C) 5/6
- D) 40%
- E) I withdraw my support

Transaction ID	Items
10001	Bread, Juice
10002	Diapers, Beer, Eggs, Formula
10003	Milk, Diapers, Bread , Formula
10004	Juice, Diapers, Milk, Eggs
10005	Soda, Milk, Eggs, Bread
10006	Formula, Juice, Diapers, Bread

What is the *support* of the rule Bread —> Juice?

- A) 33.3%
- B) 20%
- C) 5/6
- D) 40%
- E) I withdraw my support

Transaction ID	Items
10001	Bread, Juice
10002	Diapers, Beer, Eggs, Formula
10003	Milk, Diapers, Bread , Formula
10004	Juice, Diapers, Milk, Eggs
10005	Soda, Milk, Eggs, Bread
10006	Formula, Juice, Diapers, Bread

What is the *confidence* of the rule Bread —> Juice?

- A) 50%
- B) 75%
- C) 25%
- D) 40%
- E) I vote no confidence.

Transaction ID	Items
10001	Bread, Juice
10002	Diapers, Beer, Eggs, Formula
10003	Milk, Diapers, Bread , Formula
10004	Juice, Diapers, Milk, Eggs
10005	Soda, Milk, Eggs, Bread
10006	Formula, Juice, Diapers, Bread

What is the *confidence* of the rule Bread —> Juice?

- A) 50%
- B) 75%
- C) 25%
- D) 40%
- E) I vote no confidence.

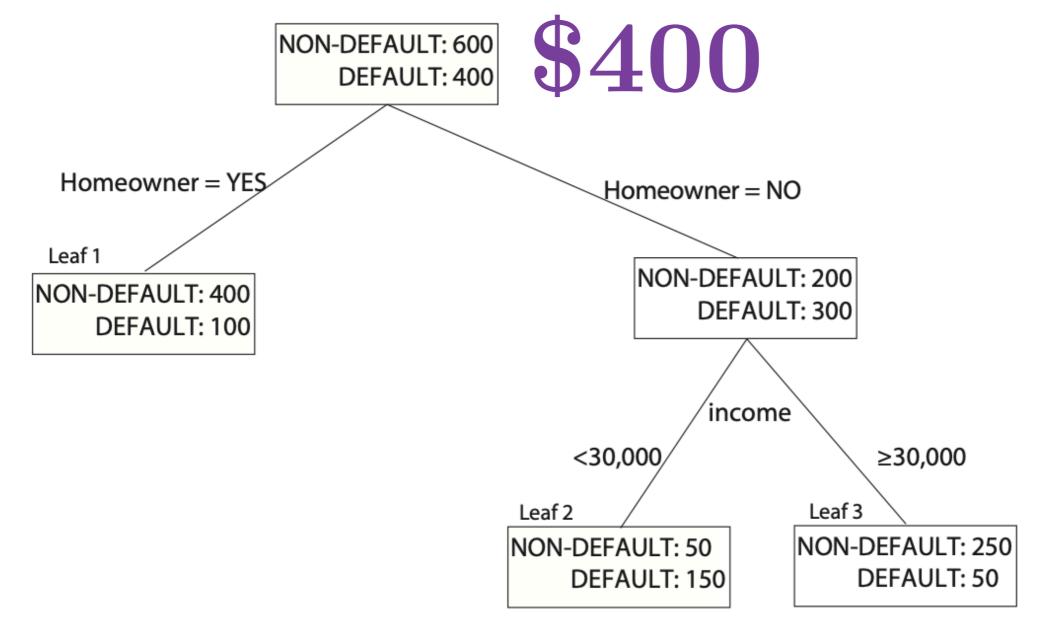
Transaction ID	Items
10001	Bread, Juice
10002	Diapers, Beer, Eggs, Formula
10003	Milk, Diapers, Bread , Formula
10004	Juice, Diapers, Milk, Eggs
10005	Soda, Milk, Eggs, Bread
10006	Formula, Juice, Diapers, Bread

What is the *lift* of the rule Bread —> Juice?

- A) 50%
- B) 1
- \mathbf{C}) 0
- D) 40%
- E) pi

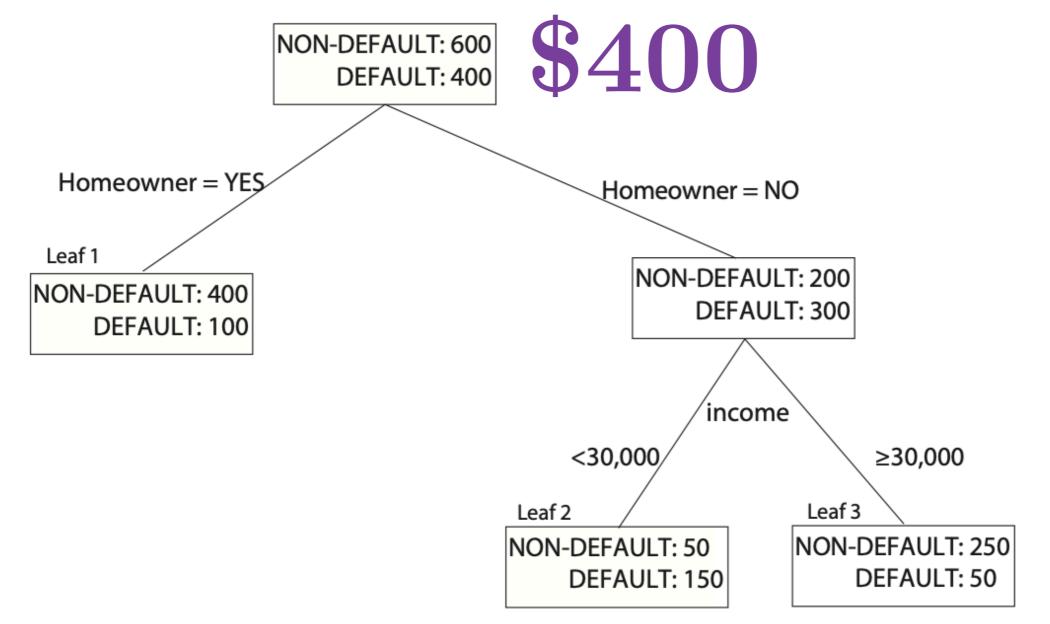
Transaction ID	Items
10001	Bread, Juice
10002	Diapers, Beer, Eggs, Formula
10003	Milk, Diapers, Bread , Formula
10004	Juice, Diapers, Milk, Eggs
10005	Soda, Milk, Eggs, Bread
10006	Formula, Juice, Diapers, Bread

What is the *lift* of the rule Bread —> Juice?

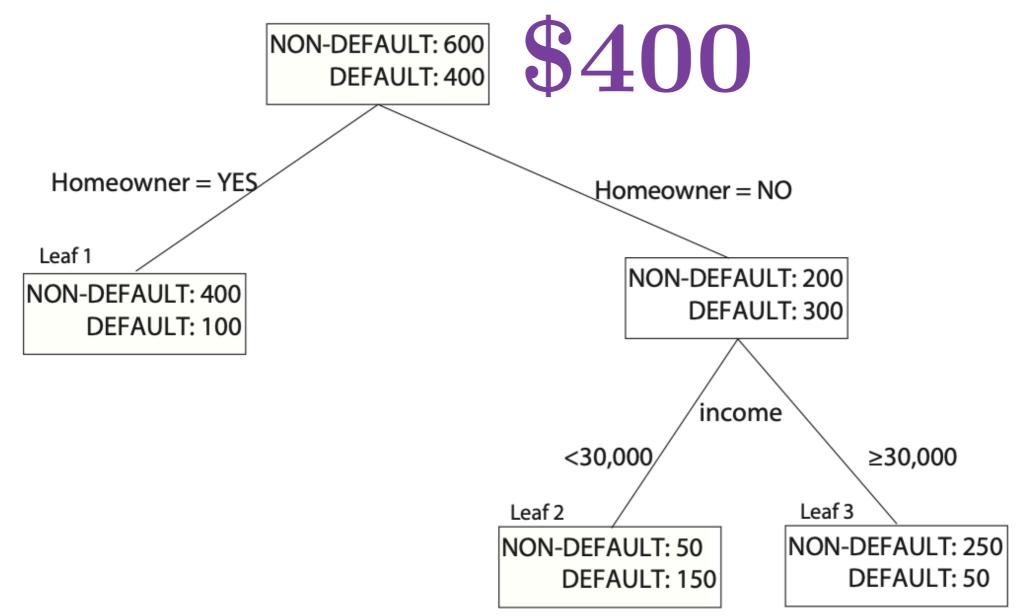

- A) 50%
- B) 1
- \mathbf{C}) 0
- D) 40%
- E) pi

What does it mean when the *lift* of the rule $A \longrightarrow B$ is greater than 1?

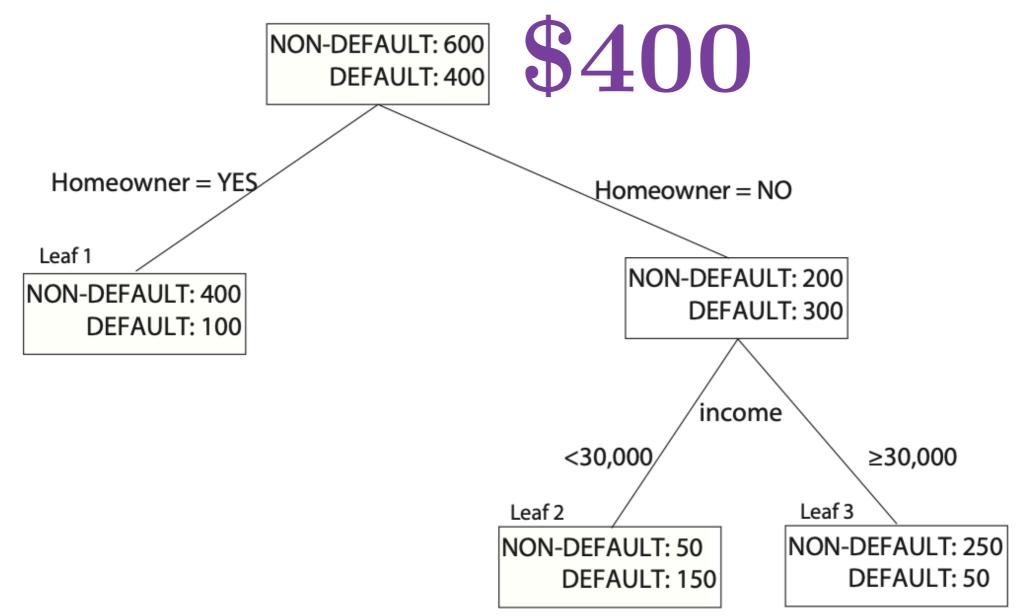
- A) It means that the purchase of item A and item B are not independent events
- B) It means that the majority of people who buy A also buy B, i.e. that the confidence is >50%
- C) It means that the there is no association between item A and item B
- D) It means that item A doesn't occur as frequently as item B
- E) It means A told B but B didn't tell C and no one went up the tree


What does it mean when the *lift* of the rule $A \longrightarrow B$ is greater than 1?

- A) It means that the purchase of item A and item B are not independent events
- B) It means that the majority of people who buy A also buy B, i.e. that the confidence is >50%
- C) It means that the there is no association between item A and item B
- D) It means that item A doesn't occur as frequently as item B
- E) It means A told B but B didn't tell C and no one went up the tree


Assuming a cutoff probability of 0.50, what is the misclassification rate of the tree above?

- A) impossible to tell
- B) 20%
- C) 2%
- D) 10%
- E) 0. This is 29


Assuming a cutoff probability of 0.50, what is the misclassification rate of the tree above?

- A) impossible to tell
- B) 20%
- C) 2%
- D) 10%
- E) 0. This \clubsuit is $\rlap{\hspace{0.1em}\cancel{\smile}\hspace{0.1em}}$

What is the predicted probability that a homeowner with an income of \$25,000 will default on their credit card payments?

- A) impossible to tell
- B) 20%
- C) 75%
- D) 0%
- E) 29

What is the predicted probability that a homeowner with an income of \$25,000 will default on their credit card payments?

- A) impossible to tell
- B) 20%
- C) 75%
- D) 0%
- E) 29

If your goal is to determine what items might be affected by a price change in item A, you'd be looking for association rules where item A was the ...

- A) Antecedent
- B) Consequent
- C) Antequent
- D) Consequedent
- E) I was told this review would be fun

If your goal is to determine what items might be affected by a price change in item A, you'd be looking for association rules where item A was the ...

- A) Antecedent
- B) Consequent
- C) Antequent
- D) Consequedent
- E) I was told this review would be fun

A 50-degree polynomial with all 2-factor interactions is likely to be a model with

- A) High bias
- B) High variance
- C) High training error
- D) Low validation error
- E) my best interests at heart.

A 50-degree polynomial with all 2-factor interactions is likely to be a model with

- A) High bias
- B) High variance
- C) High training error
- D) Low validation error
- E) my best interests at heart.

Even when run with the same input data and the same number of clusters, k-means may give the user a different answer each time it is run because...

- A) At each iteration of the algorithm, the centroids of each cluster are randomly placed.
- B) It often starts with a random initial set of centroids. The initial centroids eventually determine the final solution.
- C) k-means has to downsample the data and so the different answers are due to the different random samples of data being used.
- D) You have to put the k-means centroids into hierarchical clustering, which is randomized.
- E) That's soooo random.

Even when run with the same input data and the same number of clusters, k-means may give the user a different answer each time it is run because...

- A) At each iteration of the algorithm, the centroids of each cluster are randomly placed.
- B) It often starts with a random initial set of centroids. The initial centroids eventually determine the final solution.
- C) k-means has to downsample the data and so the different answers are due to the different random samples of data being used.
- D) You have to put the k-means centroids into hierarchical clustering, which is randomized.
- E) That's soooo random.

Which of the following is a drawback of hierarchical clustering?

- A) It is randomly initialized and will give you different results with each function call.
- B) The dendrogram it creates doesn't let you visualize how the data points and clusters relate to each other.
- C) It requires computation and storage of the pairwise distance matrix between observations, which is *huge* for large datasets.
- D) You have to pick initial seed points.
- E) You have to minimize a global objective function (SSE) which makes this method too slow in practice.

Which of the following is a drawback of hierarchical clustering?

- A) It is randomly initialized and will give you different results with each function call.
- B) The dendrogram it creates doesn't let you visualize how the data points and clusters relate to each other.
- C) It requires computation and storage of the pairwise distance matrix between observations, which is *huge* for large datasets.
- D) You have to pick initial seed points.
- E) You have to minimize a global objective function (SSE) which makes this method too slow in practice.

Which of the following imputation examples sound reasonable?

- A) Income is missing for 40% of observations, so I fill in those values with the median income.
- B) I have binary variable X which is '1' for 80% of the population. It is missing for 2% of my observations, so I set those values to '1'.
- C) I'm building a daily time series model with 2 years of data but I'm missing a sporadic 5% of observations for temperature. I impute these values with the mean of all observations.
- D) I am missing 20% of the data in a column called "total_taxes_past_3_years" so I fill in the value 0 for those observations.

Which of the following imputation examples sound reasonable?

- A) Income is missing for 40% of observations, so I fill in those values with the median income.
- B) I have binary variable X which is '1' for 80% of the population. It is missing for 2% of my observations, so I set those values to '1'.
- C) I'm building a daily time series model with 2 years of data but I'm missing a sporadic 5% of observations for temperature. I impute these values with the mean of all observations.
- D) I am missing 20% of the data in a column called "total_taxes_past_3_years" so I fill in the value 0 for those observations.

Double Jeopardy Round

Which statement accurately describes the k-Nearest Neighbor method?

- A) An unsupervised technique to partition your data into k clusters
- B) A supervised predictive technique that uses the k closest training observations to make a prediction for a test observation
- C) A heuristic method of finding the k closest clusters to a given cluster
- D) A special cross validation technique that uses one's k nearest validation observations to determine an error rate
- E) A social distancing tactic where ones nearest neighbors stay at least k feet apart

Which statement accurately describes the k-Nearest Neighbor method?

- A) An unsupervised technique to partition your data into k clusters
- B) A supervised predictive technique that uses the k closest training observations to make a prediction for a test observation
- C) A heuristic method of finding the k closest clusters to a given cluster
- D) A special cross validation technique that uses one's k nearest validation observations to determine an error rate
- E) A social distancing tactic where ones nearest neighbors stay at least k feet apart

Which of the following statements about the k-means algorithm are correct?

- A) The k-means algorithm is sensitive to outliers
- B) For different initializations, the k-means algorithm is expected to give the same clustering results.
- C) The k-means algorithm will find the global minimum of it's objective function, which sums the squared distances of each point and its cluster centroid.
- D) The output from k-means includes a dendrogram which allows you to see the evolution of the algorithm and how points were combined together
- E) k-means j because it's opposite day.

Which of the following statements about the k-means algorithm are correct?

- A) The k-means algorithm is sensitive to outliers
- B) For different initializations, the k-means algorithm is expected to give the same clustering results.
- C) The k-means algorithm will find the global minimum of it's objective function, which sums the squared distances of each point and its cluster centroid.
- D) The output from k-means includes a dendrogram which allows you to see the evolution of the algorithm and how points were combined together
- E) k-means j because it's opposite day.

Which of the following is an *advantage* of using decision trees over logistic regression?

- A) A decision tree will always be more accurate than a logistic regression
- B) Logistic regression has assumptions that require verification, decision trees do not.
- C) Decision trees can handle observations that have missing values on input variables
- D) Decision trees create response surface that is continuous (no holes or jumps) while logistic regression does not.
- E) Both B and C
- F) Trees turn carbon dioxide into oxygen. Let's see LR do that.

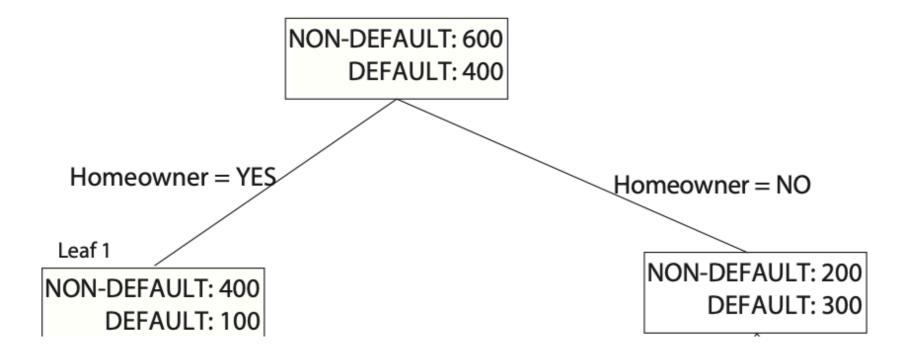
Which of the following is an *advantage* of using decision trees over logistic regression?

- A) A decision tree will always be more accurate than a logistic regression
- B) Logistic regression has assumptions that require verification, decision trees do not.
- C) Decision trees can handle observations that have missing values on input variables
- D) Decision trees create response surface that is continuous (no holes or jumps) while logistic regression does not.
- E) Both B and C
- F) Trees turn carbon dioxide into oxygen. Let's see LR do that.

Which of the following is a *disadvantage* of using the k-Nearest Neighbor Method?

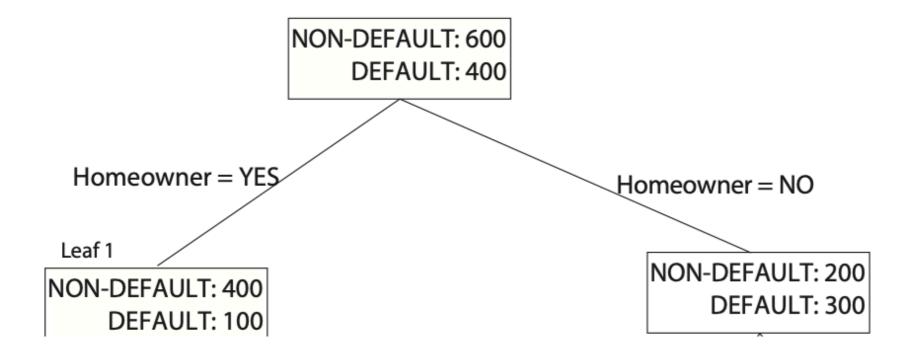
- A) k-Nearest Neighbor models have rigid assumptions that require verification
- B) k-Nearest Neighbor models do not offer any insight into variable importance
- C) k-Nearest Neighbor models cannot use categorical variables as input
- D) There is no good way to determine k for a k-Nearest Neighbor model.
- E) 📦

Which of the following is a *disadvantage* of using the k-Nearest Neighbor Method?


- A) k-Nearest Neighbor models have rigid assumptions that require verification
- B) k-Nearest Neighbor models do not offer any insight into variable importance
- C) k-Nearest Neighbor models cannot use categorical variables as input
- D) There is no good way to determine k for a k-Nearest Neighbor model.
- E) 🔷

For which of the following tasks might clustering be a suitable approach?

- A) Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.
- B) Given historical weather records, predict if tomorrow's weather will be sunny or rainy.
- C) Given information about connections on a social media platform, find out which users are most influential.
- D) Given a database of information about your users, put them into groups for targeted advertising.
- E) Laundry.


For which of the following tasks might clustering be a suitable approach?

- A) Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.
- B) Given historical weather records, predict if tomorrow's weather will be sunny or rainy.
- C) Given information about connections on a social media platform, find out which users are most influential.
- D) Given a database of information about your users, put them into groups for targeted advertising.
- E) Laundry.

What is the *gain* in misclassification rate associated with the above split?

- A) gain of 10%
- B) gain of 30%
- C) gain of 20%

What is the *gain* in misclassification rate associated with the above split?

(40%)-[10%+20%]=10%

- A) gain of 10%
- B) gain of 30%
- C) gain of 20%
- D) . final answer.

What does it mean if a model has high variance?

- A) It overfits the training data
- B) It underfits the training data
- C) The variance of the predicted values is higher than the variance of the input variables
- D) If we trained the model with a different training set, the model parameters might be wildly different
- E) Both A and D

What does it mean if a model has high variance?

- A) It overfits the training data
- B) It underfits the training data
- C) The variance of the predicted values is higher than the variance of the input variables
- D) If we trained the model with a different training set, the model parameters might be wildly different
- E) Both A and D

The association rule A—>B has a confidence of 50% and a lift of 4. What are the confidence and lift of the rule B—>A?

- A) Confidence is 50%, lift is 4
- B) Confidence is 50%, unable to know lift
- C) Unable to know confidence, lift is 4
- D) Confidence is 1/50%=2 and lift is 1/4=25%
- E) Please stop.

The association rule A—>B has a confidence of 50% and a lift of 4. What are the confidence and lift of the rule B—>A?

- A) Confidence is 50%, lift is 4
- B) Confidence is 50%, unable to know lift
- C) Unable to know confidence, lift is 4
- D) Confidence is 1/50%=2 and lift is 1/4=25%
- E) Please stop.

Final Jeopardy

Category: Bias-Variance Tradeoff

How this works.

- This is the only place you can lose money
- ▶ You'll select a wager, W
- \blacktriangleright Some proportion, p, of you will get the question right.

IF p>0.80 then Payout = pWELSE Payout = - (1-p)W

Choose your Wager

- (A) 0
- (B) 2000
- (C) 4000
- (D) 5000
- (E) 8000

Final Jeopardy Question

Which one of the following statements is **TRUE**?

- A) For k-Nearest Neighbors, large of values of k correspond to higher variance models whereas small values of k correspond to higher bias models.
- B) The purpose of pruning a decision tree is to reduce bias and increase variance.
- C) If my model performs with a high level of accuracy on the training data but performs substantially worse on a validation dataset, then I should suspect my model suffers from high variance.
- D) High variance is analogous to underfitting and high bias is analogous to overfitting.
- E) A clustering solution with high bias will be easy to explain.

Final Jeopardy Question

Which one of the following statements is **TRUE**?

- A) For k-Nearest Neighbors, large of values of k correspond to higher variance models whereas small values of k correspond to higher bias models.
- B) The purpose of pruning a decision tree is to reduce bias and increase variance.
- C) If my model performs with a high level of accuracy on the training data but performs substantially worse on a validation dataset, then I should suspect my model suffers from high variance.
- D) High variance is analogous to underfitting and high bias is analogous to overfitting.
- E) A clustering solution with high bias will be easy to explain.