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Considerations for Evaluating 
Classification Models

• Interpretation vs. Prediction 
(Model Parsimony vs. Model Error) 

• Type of prediction goal: 
• Decisions – Interested only in resulting classification (ex: ‘Yes’/‘No’) 

pick out all the winning proposals 
• Rankings – Interested in ranking individuals by their ‘true likelihood’ 

of an outcome - who are the best 10% to market to 
• Estimates – Interested in predicting probabilities or a continuous 

outcome accurately - compute expected annual cost of each machine using 
failure probabilities



Model Fit Statistics 
Summary

Estimates

Rankings

Decisions

Prediction Type  Model Fit Statistics 
Lift/Gain/Profit/Loss 

Accuracy/ Misclassification 
KS-Statistic

ROC Index  
concordance statistic 

Gini Coefficient

Average Squared Error 
SBC/Likelihood 

MAPE 
𝑅2



Yes: 60 
No: 40

Yes: 40 
No: 30

Yes: 20 
No: 10

Age<20 Age≥20

I(t) is misclassification rate

Parent misclassification rate: 40% 
Misclassification rate after split: 40% 
Gain:   0 => Don’t make this split.

I(t) is Average Squared Error

Parent averaged squared error: 0.24 
Average squared error after split: 0.23 
Gain:   0.01 => Consider this split.

Practical Difference



Yes: 60 
No: 40

Yes: 40 
No: 30

Yes: 20 
No: 10

Age<20 Age≥20

Δ = I(t) − ( nL

n
I(tL) +

nR

n
I(tR))

Parent misclassification rate: 40% 
Misclassification rate after split: 40% 
Gain:   0 => Don’t make this split.

I(t) is Average Squared Error

Parent averaged squared error: 0.24 
Average squared error after split: 0.23 
Gain:   0.01 => Consider this split.

Details: 

Parent ASE:  

Left child ASE:  

Right child ASE:  

Gain = 

1
100 (60 (1 − 0.6)2 + 40 (0 − 0.6)2)

1
70 (40 (1 −

4
7 )

2

+ 30 (0 −
4
7 )

2

)
1
30 (20 (1 −

2
3 )

2

+ 10 (0 −
2
3 )

2

)
0.24 − ( 70
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30
100

0.222) = 0.01

Details: 
Left child misclass. rate: 42% 
Right child misclass. rate: 33.3% 

Gain = 0.40 − ( 70
100

0.42 +
30

100
0.33) = 0

I(t) is misclassification rate



Response/Gain Charts
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Of top 18% of observations by 
predicted probability, 90% are 
responders (positive outcomes)
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Response/Gain Charts
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Overall population 
response rate is ∼27%



Lift Chart
While it’s great to know how many responders you got in the 
top p% of observations scored by the model, it’s even better to 
know how your model compares to random selection. 

Lift =
% 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑀𝑜𝑑𝑒𝑙

% 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛



Cumulative Lift
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At a depth of ∼20%, we 
have a lift of almost 3.5

“If we target the top 20% of customers as scored by our 
model, we’ll get 3.5 times as many responders than we would 

if we randomly targeted customers.”



Confusion Matrix

Metrics from Confusion Matrix: 

1. Accuracy: Proportion of total predictions that were correct 
2. Precision/ Positive Predictive Value: Proportion of predicted positive that 

were actually positive 
3. Negative Predictive Value: Proportion of predicted negative that were 

actually negative 
4. Sensitivity/Recall: Proportion of actual positive cases correctly identified 
5. Specificity: Proportion of actual negative cases which are correctly identified 



ROC Charts

Each point on ROC curve corresponds to 
a depth of our model (Percentile of 
observations as ordered by predicted 

probability).  

The (x,y) coordinates assume we predict 
that depth of cases as events.



ROC Charts

For example, this point might 
represent predicting event for 

the 40% of cases with the 
highest pred. probabilities.



ROC Charts

For example, this point might 
represent predicting event for 

the 40% of cases with the 
highest pred. probabilities.

Actual

Predicted

Yes No

Yes 70 10

No 30 90



ROC Charts

For example, this point might 
represent predicting event for 

the 40% of cases with the 
highest pred. probabilities.

70% of the actual positive 
outcome cases are captured 
=> True Positive Rate = 0.7

Actual

Predicted

Yes No

Yes 70 10

No 30 90



ROC Charts

For example, this point might 
represent predicting event for 
the 40% of cases with the 
highest pred. probabilities.10% of the actual negative 

outcome cases are captured 
=> False Positive Rate = 0.1

Actual

Predicted

Yes No

Yes 70 10

No 30 90



Gini Coefficient 
(Equivalent to AUC)

Gini = 2*Shaded Area 
  = 2*(AUC-0.5)



ROC Charts for  
Decision Trees
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ROC Charts for  
Decision Trees



Average Squared Error 
(ASE)

• Computes sum of squared error between probabilities 
and binary (0/1) target. 

• For class targets, let L be the number of levels in the target. 

• This objective function sets  if observation takes level  
of the target and 0 otherwise.

𝑦𝑖𝑗 = 1 𝑖  𝑗

1
nL

n

∑
i=1

L

∑
j=1

(yij − ̂yij)2



Average Squared Error 
(ASE)

Example:

Name P(red) P(blue) P(none) Actual

JimBob 0.3 0.4 0.3 BLUE
BillyBob 0.1 0.5 0.4 NONE

1
nL

n

∑
i=1

L

∑
j=1

(yij − ̂yij)2



Average Squared Error 
(ASE)

Example:

Name P(red) P(blue) P(none) Actual

JimBob 0.3 0.4 0.3 BLUE

BillyBob 0.1 0.5 0.4 NONE

1
nL

n

∑
i=1

L

∑
j=1

(yij − ̂yij)2

P(red) P(blue) P(none)

0 1 0



Average Squared Error 
(ASE)

Example:

Name P(red) P(blue) P(none) Actual

JimBob 0.3 0.4 0.3 BLUE
BillyBob 0.1 0.5 0.4 NONE

(0 − 0.3)2 + (1 − 0.4)2 + (0 − 0.3)2        +         (0 − 0.1)2 + (0 − 0.5)2 + (1 − 0.4)2 
2 ∗ 3

1
nL

n

∑
i=1

L

∑
j=1

(yij − ̂yij)2



Average Squared Error 
(ASE)

Example:

Name P(red) P(blue) P(none) Actual

JimBob 0.3 0.4 0.3 BLUE
BillyBob 0.1 0.5 0.4 NONE

(0 − 0.3)2 + (1 − 0.4)2 + (0 − 0.3)2        +         (0 − 0.1)2 + (0 − 0.5)2 + (1 − 0.4)2 
2 ∗ 3

1
nL

n

∑
i=1

L

∑
j=1

(yij − ̂yij)2



Things Customers Say
• “We need a model that is accurate when it signals an event is 

coming - false positives can cause unpredictable losses.” 

• “We need a model that sorts out group A from group B as best 
as possible.”  

• “We need to develop a risk score to measure a client’s 
likelihood of default.”  

• “We want to rank our machines in terms of failure likelihood so 
we can rotate through daily maintenance in a logical ordering.”

Lift at Depth  
Positive Predicted Value

Misclassification Rate 
K-S Statistic

Log likelihood 
Average Squared Error

AUC 
c-statistic 



Other Visual Exploration
Plot the distribution of predicted 
probabilities for each level of the 

target value.  
 

We’d want these distributions to  
look as distinct as possible.  

 
Here I used overlaid histogram with 
transparent colors so you can see  

both distributions.

hist(test$pred.probs[test[,"target"]==1], breaks=50, freq=F,   xlim=c(0,1),ylim=c(0,9), col=rgb(1,0,0,0.5), 
xlab="Predicted Probability", ylab="Density", main="Test Data Distribution of Predicted Prob. by Actual Outcome" )

hist(test$pred.probs[test[,"target"]==0], breaks=50,freq=F, xlim=c(0,1),ylim=c(0,9), col=rgb(0,0,1,0.5), xlab="", 
ylab="Density", add=T)

legend("topleft", legend=c("Actual=TRUE","Actual=FALSE"), col=c(rgb(1,0,0,0.5),rgb(0,0,1,0.5)), pt.cex=2, pch=15 )

In case you want to steal my picture:



Undersampling, Oversampling  
and Prior Probabilities

How to adjust your model to account for under/oversampling



Undersampling  
and Prior Probabilities

• Say you have a rare event as target (<10% of data) 
• Fraud  
• Catastrophic failure 
• 10%± single day change in value of stock market index 

• May have trouble modeling because a model is accurate 
for classifying everything as nonevent! 

• Potential Solution: Create a biased sample



Undersampling  
and Prior Probabilities

Undersample:  
• Under-represent common events in training data. 
• Keep all rare events and only a fraction of common events 
• Ratio of Common:Rare events is up for debate.  

• 70:30 ought to be fine.  
• 50:50 is sometimes encouraged. 

Oversample: 
• Replicate the rare events in training.  
• Do this after the training/validation split so don’t have the same 

observation in both training and validation set! 
• OR, use a hybrid technique like SMOTE (Chawla, 2002) that creates new 

data points like the rare events (not exact replicates)



Undersampling  
and Prior Probabilities

• Models provide posterior probabilities for events.  

• The accuracy of the posterior probabilities rely on a 
representative sample. 

• If we bias our sample, must adjust the posterior 
probabilities to account for this.



Why Adjustment is 
Necessary

Goal: Predict voting machine failure. Only 100 voting 
machines failed out of 10,000.  

Undersample: Dataset has 100 failures and 100 non-failures. 

Create Model: Failures: 100 
Non-failures: 100

Failures: 10 
Non-failures: 90

Failures: 90 
Non-failures: 10

last inspection date 
>3 years

last inspection date 
≤3 years

p(fail) =0.1 p(fail) =0.9



Why Adjustment is 
Necessary

Does a new machine with last inspection date >3 years 
really have a 90% probability of failing?

Failures: 100 
Non-failures: 100

Failures: 10 
Non-failures: 90

Failures: 90 
Non-failures: 10

last inspection date 
>3 years

last inspection date 
≤3 years

p(fail) =0.1 p(fail) =0.9



Why Adjustment is 
Necessary

• We’d have to go back to the data to answer this question.  
• Assuming the 100 non-failures chosen were random, 

representative sample, we expect inspection date to be ≤ 3 
years 90% of the time.  

• That is 8,910 non-failing machines with inspection date ≤ 3 
years. (8,910 = 90% of 9,900)  

• Similarly, 10% of non-failures have expect inspection date >3 
years ago. This is 990 machines.

≤ 3 years >3 years

Failures 10 90

Nonfailures 8910 990

P(Failure | last inspection date >3 years) 
90/(90+990) = 8% 

(Still failing at 8 times the rate of 
recently inspected machines)



Summary: Adjusting for 
Undersampling 

• Let  be the levels of the target variable 
• Let  index the observations in the data 
• Let  be the posterior probability from the model on 

oversampled data 
• Let  be the proportion of target level in the 

oversampled data 
• Let  be the correct proportion of target level in true 

population  

𝑙 = 𝑙1,  𝑙2, …,  𝑙𝐿
𝑖 = 1,2, …,  𝑛 
𝑂𝑙𝑑𝑃𝑜𝑠𝑡(𝑖, 𝑙)

𝑂𝑙𝑑𝑃 𝑟𝑖𝑜𝑟(𝑙)

𝑃 𝑟𝑖𝑜𝑟(𝑙)

𝑁𝑒𝑤𝑃𝑜𝑠𝑡(𝑖, 𝑙) =  
𝑂𝑙𝑑𝑃𝑜𝑠𝑡(𝑖, 𝑙) 𝑃𝑟𝑖𝑜𝑟(𝑙)

𝑂𝑙𝑑𝑃𝑟𝑖𝑜𝑟(𝑙)

∑𝐿
𝑗=1 𝑂𝑙𝑑𝑃𝑜𝑠𝑡(𝑖, 𝑙𝑗)

𝑃𝑟𝑖𝑜𝑟(𝑙𝑗)

𝑂𝑙𝑑𝑃𝑟𝑖𝑜𝑟(𝑙𝑗)


