
Naïve Bayes 
Classifier



Classifiers Determine Posterior 
Probabilities

Models determine: “Given attributes of this observation, the 
predicted probability of success is …” 

This is called a posterior probability. 
  
We might also consider the prior probabilities that someone has 
those attributes or that someone is successful  
(Simply P(attributes) or P(success)).

𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠 |𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠)



Bayesian Classifiers
• Bayesian Classifiers are based on Bayes’ theorem. 
• Naïve Bayes Classifiers assume that the effect of the 

inputs are independent of one another.  
• When A, B are independent events:  

• P(A&B)=P(A)· P(B) 

• P(A&B|C) = P(A|C)· P(B|C)



Ex: Assuming Independence
P(Small & Red) = P(Small) ⋅ P(Red)

=
3
10

5
10

=
3
20

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No



P(Small & Red |Yes) = P(Small |Yes) ⋅ P(Red |Yes)

=
1
6

⋅
4
6

=
1
9

P(Small & Red) = P(Small) ⋅ P(Red)

=
3
10

5
10

=
3
20

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

Ex: Assuming Independence



Bayes’ Theorem
• Let  =  be a sample observation with values 

on a set of p attributes. 
• x = {“Medium”, ”Blue”} in example from previous slide. 

• Let C be target class variable, taking levels   
• = “Yes” and = “No” our example  

(L=number of levels in target) 

• We want to predict the posterior probability  P( ) 
• The probability that a given observation belongs to each class, given that we 

know its attributes. 

• Bayes’ Theorem:

𝒙 {𝑥1,  𝑥2, …,  x𝑝}

{𝑐1,  𝑐2, …,  𝑐𝐿}
𝑐1 𝑐2

𝑐𝑖 |𝒙

  𝑃(𝑐𝑖 𝒙) =  
𝑃 (𝒙 |𝑐𝑖)𝑃 (𝑐𝑖)

𝑃 (𝒙)



Sample Calculation

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

Use Bayes’ theorem to compute 
the posterior probability that a 
Medium Blue car experiences 

an accident.

P(Yes |Medium & Blue)



P(x |ci) = P(Med & Blue |Yes)
= P(Medium |Yes) ⋅ P(Blue |Yes)

=
3
6

⋅
2
6

=
1
6

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

Sample Calculation: P(Yes |Medium & Blue)

P(x |ci) =
p

∏
k=1

P(xk |ci)P(ci |x) =
P(x |ci)P(ci)

P(x)



P(x) =
p

∏
k=1

P(xk)

P(x) = P(Med & Blue)
= P(Medium) ⋅ P(Blue)

=
3
10

⋅
5
10

=
3
20

P(ci |x) =
1
6 P(ci)

P(x)
Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

Sample Calculation: P(Yes |Medium & Blue)



P(ci) = P(Yes) =
6
10

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

P(ci |x) =
1
6 P(ci)

3
20

Sample Calculation: P(Yes |Medium & Blue)



Sample Calculation:   

Final Result

P(Yes |Medium & Blue)

but…what happens when we look at  ?P(No |Medium & Blue)

P(Yes |Medium & Blue) =
1
6

6
10
3

20

=
2
3



Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

Sample Calculation: P(No |Medium & Blue)

P(ci |x) =
P(x |ci)P(ci)

P(x)



P(x |ci) = P(Med & Blue |No)
= P(Medium |No) ⋅ P(Blue |No)

= 0 ⋅
3
4

= 0

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

Sample Calculation: P(No |Medium & Blue)

P(ci |x) =
P(x |ci)P(ci)

P(x)



P(x |ci) = P(Med & Blue |No)
= P(Medium |No) ⋅ P(Blue |No)

= 0 ⋅
3
4

= 0

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

Sample Calculation: P(No |Medium & Blue)

P(ci |x) =
P(x |ci)P(ci)

P(x)

Run into problems when certain 
attributes do not occur for certain 
levels of the outcome => predicted 
probabilities become exactly zero 

regardless of other attributes



• We use the following estimation based on the class independence assumption. 

• What happens if there is a class, , and an attribute value  such that none 
of the samples in  have that attribute value? 

•  which means necessarily that , even if the 

probabilities for all the other attributes are very large!

𝑐𝑖 𝑥𝑘

𝑐𝑖

𝑃(𝑥𝑘 𝑐𝑖) = 0 𝑃(𝒙 𝑐𝑖) = 0

𝑷(𝒙 𝒄𝒊) =  
𝒑

∏
𝒌=𝟏

𝑷 (𝒙𝒌 |𝒄𝒊)

Solution: Laplace Correction (Laplace Estimator)

Predicted Probabilities = 0 😱



Laplace Correction  
 (Laplace Estimator)

Simplest trick is to add a very small number 
to each cell in every crosstabulation. 

Yes No

Small 0 2
Medium 2 0
Large 1 1

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

P(x |ci) = P(Med & Blue |No)
= P(Medium |No) ⋅ P(Blue |No)

= 0 ⋅
3
4



Laplace Correction  
 (Laplace Estimator)

Simplest trick is to add a very small number 
to each cell in every crosstabulation. 

Yes No

Small 1+0.01 2+0.01
Medium 3+0.01 0+0.01
Large 2+0.01 2+0.01

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

P(x |ci) = P(Med & Blue |No)
= P(Medium |No) ⋅ P(Blue |No)

= 0 ⋅
3
4



Laplace Correction  
 (Laplace Estimator)

Simplest trick is to add a very small number 
to each cell in every crosstabulation. 

Yes No

Small 1.01 2.01
Medium 3.01 0.01
Large 2.01 2.01

Size Color Accident
Large Blue Yes

Large Red Yes
Large Blue No
Large Blue No
Medium Red Yes

Medium Blue Yes
Medium Red Yes
Small Blue No
Small Red Yes
Small Red No

P(x |ci) = P(Med & Blue |No)
= P(Medium |No) ⋅ P(Blue |No)

=
0.01
4.03

⋅
3
4

= 0.00186



Laplace Correction  
 (Laplace Estimator)

• This correction is known as a smoothing parameter. 
• In large datasets, it is most commonly set = 1. 
• Hyperparameter! Can be tuned via cross-validation.



Creating Output Probabilities

The final probabilities will not 
likely sum to 1 so we force them 

to by dividing by their sum

P(No |Medium & Blue) = 0.00186

P(Yes |Medium & Blue) =
2
3

P(No |Medium & Blue) =
0.00186

0.00186 + 2
3

= 0.00278

P(Yes |Medium & Blue) =
2
3

0.00186 + 2
3

= 0.99722



Inputs/Output
Inputs (for basic implementation) 

• Categorical variables – Determine probabilities based on cross-
tabulation of each variable with target variable 

• Normally distributed numeric variables – Determine 
probabilities based on values of the normal (Gaussian) distribution 
with mean  and variance  which would be estimated from the 
data.

μ σ

g(xi, μ, σ) =
1

2πσ
e− (xi − μ)2

2σ2

Output 
• Probabilities that a point belongs to each class.



Summary of Naïve Bayes
Advantages 
• Intuitive/Simple to explain and implement 
• Can produce very good predictions 
• Especially powerful on categorical variables and text 
• Relatively fast computation time 
• Robust to noise and irrelevant attributes 



Summary of Naïve Bayes
Disadvantages 
• Assumption that variables are independent and equally important 

for prediction is often faulty. This could lead to poor performance. 
• Most easily applied with categorical or normally distributed variables – 

most software will assume normality behind the scenes, even if 
variables not normally distributed – Careful! 

• Requires more storage than other models - your training set 
tables essentially become your model (slightly less storage than kNN). 

• More variables => more problems. The more variables (including 
levels of categoricals), the larger the dataset required to make reliable 
estimates of each conditional probability 

• Lose the ability to exploit interactions between variables 
• Estimated probabilities are less trustworthy than predicted classes.


