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A Note

• Not just for continuous targets – Ridge and Lasso have 
extensions for logistic (and other) regression models. 

• In the corresponding code from R glmnet package, simply add 
the option family=“binomial” for a classification task.



 
 

Regularization and Overfitting 
The bias-variance tradeoff revisited



Overfitting
• Models with too many variables will overfit the training data.  

• IF you want a linear model, but: 
• Leaving variables out is not an option. 
• You find it too difficult to determine which variables to leave 

out. 
• You need many variables to model a significant portion of 

signal. 
• You have more variables than observations. 
• You want superior predictions on out-of-sample data. 

 
==> THEN Regularized Regression is your best bet.



Bias-Variance Tradeoff
The mean-squared error of a model on out-of-sample test 
data can be decomposed into three terms: 

The variance 
of the estimates 
when the model 
is created on 
different 
training sets

The squared bias of 
the estimates (The 
squared difference 
between the average 
estimate over 
different training 
sets and the actual 
target value)

The 
irreducible 

error (can’t 
model this)

E(y − ̂y)2 = Var( ̂y) + [Bias( ̂y)]2 + Var(ϵ)



Bias-Variance Tradeoff Illustrated 
(For 3 different data sets)

(x-axis represents model complexity)



Regularization

• In Machine Learning, regularization is a common tool to 
control the complexity/flexibility of a model. 

• Regularization adds a penalty term to the objective function 
of a model that penalizes model complexity. 

• Also called parameter shrinkage 
• Regularization has been shown to trade the introduction of 

small amounts of bias for a reduction in large amounts of 
variance. 

• Regularization thus creates a biased model.



Strong Feelings…
“If you’re using regression without regularization, 
you have to be very special…”  

– Owen Zhang (Kaggle rank 3, Previously Chief Product Officer at 
Data Robot, now Hedge Fund Quant)



What if I told you…
• You could just go ahead and keep ALL of your variables in 

the model 

• Without overfitting the training data 

• Resulting in a complex yet generalizable model



Ridge Regression
a.k.a. 

Tikhonov Regularization 
 Regularization 
Weight-decay 

(Tikhonov 1943)

𝐿2



Ridge Regression
• Ridge regression is a biased regression technique (like PCR) 
• Parameter estimates tend to have lower variance than OLS 

estimates, but are biased  
• Often proposed as a ‘solution’ for multicollinearity when 

estimating parameters. 

• Theoretically shown to trade large amounts of variance for 
minimal amounts of bias



Ridge Regression

• OLS minimizes the sum of squared error: 

OLS Objective function:       

• Ridge regression adds a penalty for the parameters in the model: 

Ridge Objective function:    

• FIRST STEP IS TO STANDARDIZE YOUR DATA! 
• Most software will do this FOR YOU (SAS - glmselect, R - glmnet) 

but worth checking!

fOLS(x) =  
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

fridge(x) =
n

∑
i=1

(yi − ̂yi)2 + λ
p

∑
j=1

β2
j

= SSE + λ∥β∥2
2



 - The Regularization 
Parameter

𝜆

• The larger the value of  the more bias is introduced into model. 

• At very large values, all parameters would be forced to zero. 

• At very small values, the penalty term would have no effect.  

• Many ways to set/tune this parameter have been proposed through the 
years, but validation/CV is preferred.

𝜆,



 - The Regularization 
Parameter

𝜆

Optimization using cross validation:  

Option 1: Chose  that provides the minimum average error  
on K-fold cross validation. (= lambda_min) 

Option 2: (recommended) Chose the largest value of  that 
provides an average error within 1 standard deviation of the 
minimum average error. (= lambda_1se)

𝜆

𝜆



Lambda_1se: largest 
lambda within 1 standard 
deviation of minimum error

Lambda_min: lambda 
corresponding to the 
minimum error CV solution 



How  affects parameters 𝜆

OLS
Null 
Model



 
How  affects bias/variance/MSE𝜆

When  small, no penalty 
• high variance 
• no bias 
• high MSE on test data 

When  big, null model 
• high bias 
• no variance 
• high MSE on test data 

Sweet spot 
• minimizes MSE on test data 
• introduces small bias 
• substantially reduces variance

𝜆

𝜆

MSE on 
test data

variance

bias

OLS Null 
Model



Ridge Regression 
Summary

Advantages 

• Super fast. Simple closed form solution, similar to OLS. 

• Sidestep overfitting concerns without leaving variables out of the 
model (no variable selection required!) 

• Works well in situations where least squares estimates have high 
variance (solution to severe multicollinearity) 

Disadvantages 

• Will not create many zero parameter estimates, so all of the input 
variables likely to stay in the model. 

• No statistical hypothesis tests for beta coefficients



The LASSO
a.k.a 

 Regularization 
(Tibshirani 1996)
𝐿1



Penalties for Model 
Selection

• In recent years, stepwise selection techniques for variable 
selection have come under fire. 

• Alternative methods, such as “The LASSO” have been 
proposed and have soared in popularity.



Drawbacks to Stepwise 
Selection

• Bias in parameter estimation 
• Standard errors biased toward zero 
• p-values biased toward zero 
• Parameter estimates biased away from zero 
• R-Squared biased upwards 

• F and Chi-Square tests don’t have the desired distribution 
• Resulting models are complex with exacerbated collinearity problems 
• Inconsistencies among model selection algorithms 
• An inherent problem with multiple hypothesis testing 
• An inappropriate focus or reliance on a single best model 

(MJ Whittingham et al – 2006,  Harrell – 2010, Flom & Cassell – 2007)



Analogy for Stepwise
Flom and Cassell (2007) write: 

“In Stepwise Regression, this assumption [of independent hypothesis tests] is 
grossly violated in ways that are difficult to determine.  

For example, if you toss a coin ten times and get ten heads, then you are pretty 
sure that something weird is going on. You can quantify exactly how unlikely 
such an event is… 

If you have 10 people each toss a coin ten times, and one of them gets 10 
heads, you are less suspicious, but you can still quantify the likelihood.  

But if you have a bunch of friends (you don’t count them) toss coins some 
number of times (they don’t tell you how many) and someone gets 10 heads in 
a row, you don’t even know how suspicious to be. That’s stepwise.”



LASSO Regression

• OLS minimizes the sum of squared error: 

OLS Objective function:       

• LASSO regression adds a penalty for the parameters in the model: 

LASSO Objective function:   

• FIRST STEP IS TO STANDARDIZE YOUR DATA! 
• Most software will do this FOR YOU (SAS - glmselect, R - 

glmnet) but worth checking!

fOLS(x) =  
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

fLASSO(x) =
n

∑
i=1

(yi − ̂yi)2 + λ
p

∑
j=1

|βj |

= SSE + λ∥β∥1



LASSO = Variable Selection

The LASSO penalty has the added benefit that it causes 
many of the parameter estimates to tend toward zero. 

=> The LASSO produces sparse solutions 

This implies automated variable selection



How  affects Parameters 𝜆

OLS
Null 

Model

See the parameter estimates  
going to zero at different values 

of lambda



Lambda_1se: largest 
lambda within 1 standard 
deviation of minimum error

Lambda_min: lambda 
corresponding to the 
minimum error Cross 
Validation solution 



LASSO Regression
• Very common when the number of variables is overwhelming 

for stepwise selection (particularly in text) 

• Generally implemented through Least Angle Regression 
(LARS) algorithm (Efron et al 2004) 

•  glmnet package in R 
•  lars package in R 

•  LARS node in SAS EM  
•  proc glmselect option selection=LASSO



Predicting Salary of 
Baseball Players

An Example in R



Stepwise Selection the ML way
The number of variables in the model, p, is a hyperparameter to be tuned



Stepwise Selection Using 
Validation

The purpose here is to choose a level of model complexity, p= the 
number of parameters. 

1. Run the stepwise selection algorithm on training data. For all 
possible number of variables, p, find the chosen model. 

2. Compare the p models found in step 1 on validation data and 
record the MSE.  

3. Pick the ”optimal” number of parameters p* as the one that 
minimized the MSE on validation data. 

4. Now you’ve validated your modelling process. Re-run the 
stepwise selection on the entire data to choose p* parameters. 
Yes, They may be different when you use all the data! That’s ok. You’ve validated the procedure!



Forward Selection Using 
Validation: Tuning p

Forward Selection choosing 1 variable

Get predictions 
for  

Validation 
Data 

and compute  
error

Forward Selection choosing 2 variables

Forward Selection choosing 3 variables

Forward Selection choosing 4 variables

Forward Selection choosing 5 variables

Forward Selection choosing 6 variables

Forward Selection choosing 7 variables

25 

20 

15 

16 

19 

21 

Validation 
Error:

18 

Build 
models 
using 

forward 
selection  on 
Training 

Data



Forward Selection Using 
Validation: Finalize ModelTraining 

Data 

Forward Selection choosing 4 variables

Validation 
Data

Final Model  y = β0 + β1x1 + β2x2 + β3x3 + β4x4



Stepwise Selection on 
Hitters Data

When backward selection arrived at a 4 variable 
model, it contained columns {1, 12, 3, 17}



Stepwise Selection on 
Hitters Data

The first variable to leave in backward selection 
was column 11.

This agreed with forward selection, which added 
that variable to the model last



Stepwise Selection on 
Hitters Data

p* = 10 p* = 7



Stepwise Selection on 
Hitters Data

p* = 10 p* = 7



Stepwise Selection on 
Hitters Data: Conclusion

• In the Hitters example, we found that forward selection 
chose a model with 10 parameters and backward selection 
chose a model with 7 parameters. 

• The validation MSE on both models was   ̴the same. 
• Choose the simpler model. 
• To obtain final model, run backward selection choosing 7 

variables on the whole data set (training + validation).



Ridge Regression
• The number of parameters used in the stepwise selection 

models didn’t agree, nor did the actual variables used. 
• If simplicity of the model is not as important as 

generalizability, we can consider ridge regression. 
• Why? 

• Skip the agony of choosing predictors. Use them all, and shrink parameters 
to control for overfitting. 

• Ridge regression generally yields better predictions than OLS through a 
better bias-variance compromise. 

• Works especially well in the presence of severe multicollinearity in 
predictor variables.



alpha = 0 for ridge  
alpha = 1 for LASSO  

0<alpha<1 for elastic net

Ridge Regression on 
 Hitters Data



Ridge Regression on 
Hitters Data



Lambda.min  vs  
Lambda.1se

Lambda.min  
The value of lambda that provides the minimum average MSE on cross validation 

Lambda.1se 
The value of lambda that provides the simplest model but still provides MSE within 1 
standard error of the minimum of cross validation 

Sometimes lambda.min provides a model that still has too 
much variance and lambda.1se provides a slightly more 
stable model with less variance



The LASSO
• If simplicity of the model IS desired, but we decide that 

we’re not comfortable with the stepwise selection 
procedure… 

• (In the case of many variables (∼50-100) we probably shouldn’t 
be comfortable with such a procedure) 

• Parameter shrinkage methods like the LASSO have proven 
to work better in light of the bias-variance trade-off. 



The LASSO on  
Hitters Data

alpha = 0 for ridge  
alpha = 1 for LASSO  

0<alpha<1 for elastic net



The LASSO on  
Hitters Data



The LASSO on  
Hitters Data

LASSO automatically creates 
sparse solutions. 

=> Variable Selection



SAS Viya
LASSO and ELASTIC NET in Viya Studio





The Elastic Net
Combining the L1 and L2 penalties



ElasticNet Criteria 
(Zou & Hastie 2005)

The ElasticNet Criteria combines the  penalty and the  
penalty to achieve both the parameter shrinkage of ridge 
regression and the sparsity feature of the LASSO. 

 

Works better than LASSO when some of your input variables are 
highly correlated 
In R glmnet package, simply set 0<alpha<1. 
Alpha closer to 0 emphasizes ridge regression 
Alpha closer to 1 emphasizes LASSO.

𝐿1 𝐿2

f𝐸𝐿𝐴𝑆𝑇𝐼𝐶(x) =  
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

+ 𝜆1

𝑝

∑
𝑗=1

|𝛽𝑗 | + 𝜆2

𝑝

∑
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𝛽2
𝑗


