
Support Vector 
Machines



Linearly Separable Data



SVM: Simple Linear Separator

hyperplane



Which 
Simple Linear Separator?



Classifier Margin



Objective #1: 
 Maximize Margin



How’s this look?



Objective #2:  
Minimize Misclassifications



Support Vectors



Not Linearly Separable



SVM w/ “Soft Margin”



The SVM Classifier Model
• A hyperplane in  can be represented by a vector w with p 
elements (p= #variables), plus a “bias” term, , which lifts it 
away from the origin. 
      f(x) =      (equation of decision boundary) 

• Any observation, x, ‘above’ the hyperplane has 
      f(x) =  

• Any observation, x, ‘below’ the hyperplane has 
   f(x) =

ℝp

 𝑤0

w0 + wTx = 0

w0 + wTx > 0

w0 + wTx < 0



The SVM Classifier Model
• Decision boundary: f(x) =    

• ‘Above’ the hyperplane:  f(x) =  

• ‘Below’ the hyperplane f(x) =  
• Binary target variable y is coded as {+1, -1} so that 

  
means obs.  was correctly classified. 

w0 + wTx = 0

w0 + wTx > 0

w0 + wTx < 0

yi ⋅ f(xi) > 0
i



The input…

• Input data and a class target.  

• For best results, input data should be centered and 
standardized/normalized 

• Hyperparameters for regularization and kernels. 
• (more on this in a minute…)



The output…
The output ‘model’ will be a set of parameters  
(i.e. a vector, w, plus an intercept ) 

For a new example, x: 
• If  then predict target  

• If  then predict target  

The above output changes when kernels are used, and it is 
best to use the model as an output object in that case.

𝑤0

w0 + wTx < 0 =   − 1

w0 + wTx > 0 =   + 1



Nonlinear SVMs
“The Kernel Trick”



Not Linearly Separable



Create Additional 
Variables?



z = x2+y2



New Data  
is Linearly Separable!



Another view…

The last ‘trick’ seems 
difficult in this case! 

Not immediately clear what 
transformation will make this 

data linearly separable.



Kernels

Suppose we add two points, which 
we’ll call ‘landmarks’. 

Then, we create two new variables,  
and , which measure the similarity 
of each point to those landmarks.

f1
f2



Kernels

 is some measure of similarity 
(proximity) to  

It takes large values near  and 
small values far from . 

f1
l1

l1
l1



Kernels

 is some measure of similarity 
(proximity) to  

It takes large values near  and 
small values far from . 

f2
l2

l2
l2



Kernels

Let’s ignore our previous variables 
(the axis presently shown) and 

instead use . 

Where would the red and blue points 
be located if the axes were ? 

Draw this picture

f1 and f2

f1 and f2



Kernels

• You could choose a modest number of 
landmarks (using clustering or other 
methodology). 

• Essentially implies a similarity matrix to use 
in place of the data. 

• Next natural question – How do we 
choose the landmarks?

• In practice, a kernel uses every 
data point as a landmark.



Summary of Kernels
• Kernels are similarity functions that measure some kind of 
proximity between data points. 

• Number of data points becomes number of variables 
• This is not great for large datasets!  

• SVMs can use kernels without explicitly computing/storing 
a similarity matrix, but still computationally slow 

• Kernels can improve the performance of SVMs in most 
situations.



Choosing Kernels

• Kernels embed data in a higher dimensional space 
(implicitly) 

• Cannot typically know ahead of time which kernel function 
will work best (although for text data, linear kernel is 
highly recommended) 

• Can try several, take best performer on validation data



Popular Kernels
• Linear (i.e. no kernel) 
• Radial Basis Functions (RBFs)  

•Gaussian is most common and usually default 

 
• is hyper parameter controlling shape of function. 

• Some packages want you to specify gamma ( ).  
Some ask you to specify sigma ( ). 

• NOT good for text classification. Typically linear is best for text

e
−∥xi − xj∥2

2σ2 = e−γ∥xi−xj∥2

𝛾 =  
1

2𝜎2
    

𝛾
𝜎



RBF/Gaussian Kernel

σ = 1

e
−∥xi − x∥2

2σ2

σ = 0.5



Kernels

• The circles shown are meant 
to represent contours of those 

Gaussian functions. 

• For which kernel fuction is 
larger, ? 

• (In the actual method,  is the 
same for each point)

𝜎 
f1 or f2

σ



RBF/Gaussian Kernel

σ = 1

e
−∥xi − x∥2

2σ2

σ = 0.5



Tuning  
(or equivalently, ) 

𝜎 
𝛾

• This hyperparameter controls the ‘influence’ of each training 
observation.  

• A larger value of   (equivalently, a smaller value of ) 
means that basis functions are wider – the influence of a 
single point is expanded.  

• Smoother decision boundary => Reduce potential for overfitting. 

• A smaller value of   (equivalently, a larger value of ) 
means that basis functions are slimmer – the influence of 
a single point is diminished. 

• More localized/jagged decision boundary => Overfitting more likely 
• Consider: if  were small enough, every point might be identified individually!

𝝈 𝛾

𝝈 𝛾

𝜎



Other Kernels

• Polynomial 

•  where a and c are constants and d is degree of polynomial 

• Sigmoid 

•  where a and c are constants 

• Both much less popular than linear/RBF

(𝑎𝑥𝑇
𝑖 𝑥𝑗 + 𝑐)

𝑑

𝑡𝑎𝑛h(𝑎𝑥𝑇
𝑖 𝑥𝑗 + 𝑐)



What kernels can do



What kernels can do



Regularization
• As with most machine learning algorithms, a regularization 
penalty on w can be added,  

• Rather than specifying , SVMs are coded to expect 

    C =   

• C controls the tradeoff between a smooth decision boundary (bias/
underfitting) and classifying training points correctly (variance/
overfitting). 

• Larger C aims to classify all training points correctly. 
• Smaller C aims to make decision surface more smooth.

λ∥w∥

𝜆
1
𝜆



Tuning Hyperparameters 
• How do we choose the specific values of the 
hyperparameters  (or ) and C? 

• One option is a grid search. See how the algorithm 
performs for all combinations of  and C within a certain 
range:

𝜎 𝛾

𝜎

high CV accuracy

low CV accuracy



Summary of SVM
Advantages 
• Good classifier in large margin situations 
• Kernels often work really well 
• Only requires support vector data points, memory 
efficient 

•Works well with more variables than observations, 
and with high dimensional data in general



Summary of SVM
Disadvantages 
• Computationally complex - large datasets require long 
training time 

•No variable selection 
• No variable importance/interpretability 
• No predicted probabilities (only ”decisions”/classes) 

•  Achieved post hoc analysis via logistic regression on the SVM’s scores 
• Two hyperparameters to tune 

•(C or ) equivalent regularization parameters (C =  ) 

•(  or ) equivalent kernel parameters ( )

𝜆
1
𝜆

𝛾 𝜎 𝛾 =  
1

2𝜎2



Extensions of SVMs
Multiclass classification 

Regression



Multiclass Classification 
with SVM

• Starting with k classes 
• Train one SVM for each class, separating the points in that class  

(code as +1) from all other points (code as -1). 
• For SVM on class , result is a set of parameters  
• To classify a new data point  compute and place in the class for 

which is largest.

𝑖 𝒘𝒊 
𝒅, 𝒘𝑻

𝒊  𝒅  𝒅 
𝒘𝑻

𝒊  𝒅 

• Most straightforward approach: One vs. All (OVA) method 



Multiclass Classification 
with SVM

• This is still an ongoing research issue: how to define a 
larger objective function efficiently to avoid several binary 
classifiers. 

• New methods/packages constantly being developed. Most 
existing packages can handle multiclass targets.

• Starting with k classes 
• Train one SVM for each pair of classes,  separating the points from the 

two classes. 
• To classify a new data point  place in the class for which it won the 

most number of pairwise comparisons.
𝒅, 𝒅 

• Another approach: One vs. One (OVO) method 



Support Vector Regression

• The methodology behind SVMs has been extended to the 
regression problem. 

• Essentially, the data is imbedded in a very high 
dimensional space via kernels and then a regression 
hyperplane is determined via optimization. 

• ε-insensitive loss regression - one popular implementation



Creating and Tuning an 
SVM in R

e1071 library

note: SAS no longer seems to support Radial Basis Functions!





Exact Specification of SVM 
Optimization w/o Kernels

For those who are interested. When Kernels are introduced, we need 
more sophisticated math, namely reproducing kernel Hilbert spaces = 😩



Optimization Setup - Hard 
Margin Classifier (HMC)

maximize
w

M

subject to
∥w∥ = 1,

yi (w0 + w1xi1 + … + wpxip) ≥ M, i = 1,2,…, n

If , this is distance btwn 
points and hyperplane

∥w∥ = 1



Optimization Setup - Soft 
Margin Classifier (SMC)

maximize
w

M

subject to

∥w∥ = 1,

yi (w0 + w1xi1 + … + wpxip) ≥ M (1 − ξi), i = 1,2,…, n

ξi ≥ 0,
∑n

i=1 ξi ≤ C


