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CHAPTER 9
BASIS AND CHANGE OF BASIS

When we think of coordinate pairs, or coordinate triplets, we tend to think
of them as points on a grid where each axis represents one of the coordinate
directions:
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When we think of our data points this way, we are considering them as
linear combinations of elementary basis vectors
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For example, the point (2, 3) is written as
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= 2e1 + 3e2. (9.1)
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We consider the coefficients (the scalars 2 and 3) in this linear combination
as coordinates in the basis B1 = {e1, e2}. The coordinates, in essence, tell us
how much “information” from the vector/point (2, 3) lies along each basis
direction: to create this point, we must travel 2 units along the direction of e1
and then 3 units along the direction of e2.

We can also view Equation 9.1 as a way to separate the vector (2, 3) into
orthogonal components. Each component is an orthogonal projection of
the vector onto the span of the corresponding basis vector. The orthogonal
projection of vector a onto the span another vector v is simply the closest point
to a contained on the span(v), found by “projecting” a toward v at a 90� angle.
Figure 9.1 shows this explicitly for a = (2, 3).
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Figure 9.1: Orthogonal Projections onto basis vectors.

Definition 9.0.1: Elementary Basis

For any vector a = (a1, a2, . . . , an), the basis B = {e1, e2, . . . , en} (recall
ei is the ith column of the identity matrix In) is the elementary basis
and a can be written in this basis using the coordinates a1, a2, . . . , an as
follows:

a = a1e1 + a2e2 + . . . anen.

The elementary basis B1 is convenient for many reasons, one being its
orthonormality:
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However, there are many (infinitely many, in fact) ways to represent the
data points on different axes. If I wanted to view this data in a different
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way, I could use a different basis. Let’s consider, for example, the following
orthonormal basis, drawn in green over the original grid in Figure 9.2:
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Figure 9.2: New basis vectors, v1 and v2, shown on original plane

The scalar multipliers
p

2
2 are simply normalizing factors so that the basis

vectors have unit length. You can convince yourself that this is an orthonormal
basis by confirming that
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2 v2 = 1
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1 v2 = vT
2 v1 = 0

If we want to change the basis from the elementary B1 to the new green basis
vectors in B2, we need to determine a new set of coordinates that direct us to
the point using the green basis vectors as a frame of reference. In other words
we need to determine (a1, a2) such that travelling a1 units along the direction
v1 and then a2 units along the direction v2 will lead us to the point in question.
For the point (2, 3) that means
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This is merely a system of equations Va = b:
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The 2 ⇥ 2 matrix V on the left-hand side has linearly independent columns
and thus has an inverse. In fact, V is an orthonormal matrix which means its
inverse is its transpose. Multiplying both sides of the equation by V�1 = VT

yields the solution

a =

✓
a1
a2

◆
= VTb =

 
5
p

2
2

�
p

2
2

!

This result tells us that in order to reach the red point (formerly known
as (2,3) in our previous basis), we should travel 5

p
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2 units along the direction
of v1 and then �
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2 units along the direction v2 (Note that v2 points toward
the southeast corner and we want to move northwest, hence the coordinate
is negative). Another way (a more mathematical way) to say this is that the
length of the orthogonal projection of a onto the span of v1 is 5
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the orthogonal projection of a onto the span of v2 is �
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2 . While it may seem that
these are difficult distances to plot, they work out quite well if we examine our
drawing in Figure 9.2, because the diagonal of each square is

p
2.

In the same fashion, we can re-write all 3 of the red points on our graph
in the new basis by solving the same system simultaneously for all the points.
Let B be a matrix containing the original coordinates of the points and let A be
a matrix containing the new coordinates:
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Then the new data coordinates on the rotated plane can be found by solving:

VA = B

And thus

A = VTB =
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Using our new basis vectors, our alternative view of the data is that in
Figure 9.3.

In the above example, we changed our basis from the original elementary
basis to a new orthogonal basis which provides a different view of the data. All
of this amounts to a rotation of the data around the origin. No real information
has been lost - the points maintain their distances from each other in nearly
every distance metric. Our new variables, v1 and v2 are linear combinations
of our original variables e1 and e2, thus we can transform the data back to its
original coordinate system by again solving a linear system (in this example,
we’d simply multiply the new coordinates again by V).

In general, we can change bases using the procedure outlined in Theorem
9.0.1.
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Figure 9.3: Points plotted in the new basis, B

Theorem 9.0.1: Changing Bases

Given a matrix of coordinates (in columns), A, in some basis, B1 =
{x1, x2, . . . , xn}, we can change the basis to B2 = {v1, v2, . . . , vn} with
the new set of coordinates in a matrix B by solving the system

XA = VB

where X and V are matrices containing (as columns) the basis vectors
from B1 and B2 respectively.
Note that when our original basis is the elementary basis, X = I, our
system reduces to

A = VB.

When our new basis vectors are orthonormal, the solution to this system
is simply

B = VTA.

Definition 9.0.2: Basis Terminology

A basis for the vector space Rn can be any collection of n linearly
independent vectors in Rn; n is said to be the dimension of the vector
space Rn. When the basis vectors are orthonormal (as they were in our
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example), the collection is called an orthonormal basis.

The preceding discussion dealt entirely with bases for Rn (our example
was for points in R2). However, we will need to consider bases for subspaces of
Rn. Recall that the span of two linearly independent vectors in R3 is a plane.
This plane is a 2-dimensional subspace of R3. Its dimension is 2 because 2
basis vectors are required to represent this space. However, not all points from
R3 can be written in this basis - only those points which exist on the plane.
In the next chapter, we will discuss how to proceed in a situation where the
point we’d like to represent does not actually belong to the subspace we are
interested in. This is the foundation for Least Squares.

Exercises

1. Show that the vectors v1 =
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and v2 =

✓
�2
6

◆
are orthogonal. Create

an orthonormal basis for R2 using these two direction vectors.

2. Consider a1 = (1, 1) and a2 = (0, 1) as coordinates for points in the
elementary basis. Write the coordinates of a1 and a2 in the orthonormal
basis found in exercise 1. Draw a picture which reflects the old and new
basis vectors.

3. Write the orthonormal basis vectors from exercise 1 as linear combinations
of the original elementary basis vectors.

4. What is the length of the orthogonal projection of a1 onto v1?


