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CHAPTER 10
EIGENVALUES AND EIGENVECTORS

Definition 10.0.3: Eigenvalues and Eigenvectors

For a square matrix An⇥n, a scalar l is called an eigenvalue of A if
there is a nonzero vector x such that

Ax = lx.

Such a vector, x is called an eigenvector of A corresponding to the
eigenvalue l. We sometimes refer to the pair (l, x) as an eigenpair.

Eigenvalues and eigenvectors have numerous applications throughout math-
ematics, statistics and other fields. First, we must get a handle on the definition
which we will do through some examples.

Example 10.0.3: Eigenvalues and Eigenvectors

Determine whether x =

✓
1
1

◆
is an eigenvector of A =

✓
3 1
1 3

◆
and if

so, find the corresponding eigenvalue.
To determine whether x is an eigenvector, we want to compute Ax and
observe whether the result is a multiple of x. If this is the case, then the
multiplication factor is the corresponding eigenvalue:

Ax =

✓
3 1
1 3

◆✓
1
1

◆
=

✓
4
4

◆
= 4

✓
1
1

◆

From this it follows that x is an eigenvector of A and the corresponding
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eigenvalue is l = 4.

Is the vector y =

✓
2
2

◆
an eigenvector?

Ay =

✓
3 1
1 3

◆✓
2
2

◆
=

✓
8
8

◆
= 4

✓
2
2

◆
= 4y

Yes, it is and it corresponds to the same eigenvalue, l = 4

Example 10.0.3 shows a very important property of eigenvalue-eigenvector
pairs. If (l, x) is an eigenpair then any scalar multiple of x is also an eigenvector
corresponding to l. To see this, let (l, x) be an eigenpair for a matrix A (which
means that Ax = lx) and let y = ax be any scalar multiple of x. Then we have,

Ay = A(ax) = a(Ax) = a(lx) = l(ax) = ly

which shows that y (or any scalar multiple of x) is also an eigenvector associated
with the eigenvalue l.

Thus, for each eigenvalue we have infinitely many eigenvectors. In the
preceding example, the eigenvectors associated with l = 4 will be scalar

multiples of x =

✓
1
1

◆
. You may recall from Chapter 6 that the set of all scalar

multiples of x is denoted span(x). The span(x) in this example represents the
eigenspace of l. Note: when using software to compute eigenvectors, it is standard
practice for the software to provide the normalized/unit eigenvector.

In some situations, an eigenvalue can have multiple eigenvectors which are
linearly independent. The number of linearly independent eigenvectors associ-
ated with an eigenvalue is called the geometric multiplicity of the eigenvalue.
Example 10.0.4 clarifies this concept.

Example 10.0.4: Geometric Multiplicity

Consider the matrix A =

✓
3 0
0 3

◆
. It should be straightforward to see

that x1 =

✓
1
0

◆
and x2 =

✓
0
1

◆
are both eigenvectors corresponding to

the eigenvalue l = 3. x1 and x2 are linearly independent, therefore the
geometric multiplicity of l = 3 is 2.

What happens if we take a linear combination of x1 and x2? Is that also
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an eigenvector? Consider y =

✓
2
3

◆
= 2x1 + 3x2. Then

Ay =

✓
3 0
0 3

◆✓
2
3

◆
=

✓
6
9

◆
= 3

✓
2
3

◆
= 3y

shows that y is also an eigenvector associated with l = 3.
The eigenspace corresponding to l = 3 is the set of all linear combina-
tions of x1 and x2, i.e. the span(x1, x2).

We can generalize the result that we saw in Example 10.0.4 for any square
matrix and any geometric multiplicity. Let An⇥n have an eigenvalue l with
geometric multiplicity k. This means there are k linearly independent eigenvec-
tors, x1, x2, . . . , xk such that Axi = lxi for each eigenvector xi. Now if we let y
be a vector in the span(x1, x2, . . . , xk) then y is some linear combination of the
xi’s:

y = a1x2 + a2x2 + · · ·+ akxk

Observe what happens when we multiply y by A:

Ay = A(a1x2 + a2x2 + · · ·+ akxk)

= a1(Ax1) + a2(Ax2) + · · ·+ ak(Axk)

= a1(lx1) + a2(lx2) + · · ·+ ak(lxk)

= l(a1x2 + a2x2 + · · ·+ akxk)

= ly

which shows that y (or any vector in the span(x1, x2, . . . , xk)) is an eigenvector
of A corresponding to l.

This proof allows us to formally define the concept of an eigenspace.

Definition 10.0.4: Eigenspace

Let A be a square matrix and let l be an eigenvalue of A. The set of all
eigenvectors corresponding to l, together with the zero vector, is called
the eigenspace of l. The number of basis vectors required to form the
eigenspace is called the geometric multiplicity of l.

Now, let’s attempt the eigenvalue problem from the other side. Given an
eigenvalue, we will find the corresponding eigenspace in Example 10.0.5.
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Example 10.0.5: Eigenvalues and Eigenvectors

Show that l = 5 is an eigenvalue of A =

✓
1 2
4 3

◆
and determine the

eigenspace of l = 5.

Attempting the problem from this angle requires slightly more work.
We want to find a vector x such that Ax = 5x. Setting this up, we have:

Ax = 5x.

What we want to do is move both terms to one side and factor out the
vector x. In order to do this, we must use an identity matrix, otherwise
the equation wouldn’t make sense (we’d be subtracting a constant from
a matrix).

Ax � 5x = 0
(A � 5I)x = 0

✓✓
1 2
4 3

◆
�

✓
5 0
0 5

◆◆✓
x1
x2

◆
=

✓
0
0

◆

✓
�4 2
4 �2

◆✓
x1
x2

◆
=

✓
0
0

◆

Clearly, the matrix A � lI is singular (i.e. does not have linearly inde-
pendent rows/columns). This will always be the case by the definition
Ax = lx, and is often used as an alternative definition.
In order to solve this homogeneous system of equations, we use Gaus-
sian elimination:

✓
�4 2 0
4 �2 0

◆
�!

✓
1 � 1

2 0
0 0 0

◆

This implies that any vector x for which x1 � 1
2 x2 = 0 satisfies the

eigenvector equation. We can pick any such vector, for example x =✓
1
2

◆
, and say that the eigenspace of l = 5 is

span
⇢✓

1
2

◆�

If we didn’t know either an eigenvalue or eigenvector of A and instead
wanted to find both, we would first find eigenvalues by determining all possible
l such that A � lI is singular and then find the associated eigenvectors. There
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are some tricks which allow us to do this by hand for 2 ⇥ 2 and 3 ⇥ 3 matrices,
but after that the computation time is unworthy of the effort. Now that we
have a good understanding of how to interpret eigenvalues and eigenvectors
algebraically, let’s take a look at some of the things that they can do, starting
with one important fact.

Theorem 10.0.2: Eigenvalues and the Trace of a Matrix

Let A be an n ⇥ n matrix with eigenvalues l1, l2, . . . , ln. Then the sum
of the eigenvalues is equal to the trace of the matrix (recall that the trace
of a matrix is the sum of its diagonal elements).

Trace(A) =
n

Â
i=1

li.

Example 10.0.6: Trace of Covariance Matrix

Suppose that we had a collection of n observations on p variables,
x1, x2, . . . , xp. After centering the data to have zero mean, we can com-
pute the sample variances as:

var(xi) =
1

n � 1
xT

i xi = kxik2

These variances form the diagonal elements of the sample covariance
matrix,

S =
1

n � 1
XTX

Thus, the total variance of this data is

1
n � 1

n

Â
i=1

kxik2 = Trace(S) =
n

Â
i=1

li.

In other words, the sum of the eigenvalues of a covariance matrix
provides the total variance in the variables x1, . . . , xp.

10.1 Diagonalization

Let’s take another look at Example 10.0.5. We already showed that l1 = 5 and

v1 =

✓
1
2

◆
is an eigenpair for the matrix A =

✓
1 2
4 3

◆
. You may verify that

l2 = �1 and v2 =

✓
1
�1

◆
is another eigenpair. Suppose we create a matrix of
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eigenvectors:

V = (v1, v2) =

✓
1 1
2 �1

◆

and a diagonal matrix containing the corresponding eigenvalues:

D =

✓
5 0
0 �1

◆

Then it is easy to verify that AV = VD:

AV =

✓
1 2
4 3

◆✓
1 1
2 �1

◆

=

✓
5 �1

10 1

◆

=

✓
1 1
2 �1

◆✓
5 0
0 �1

◆

= VD

If the columns of V are linearly independent, which they are in this case, we
can write:

V�1AV = D

What we have just done is develop a way to transform a matrix A into a
diagonal matrix D. This is known as diagonalization.

Definition 10.1.1: Diagonalizable

An n ⇥ n matrix A is said to be diagonalizable if there exists an invert-
ible matrix P and a diagonal matrix D such that

P�1AP = D

This is possible if and only if the matrix A has n linearly independent
eigenvectors (known as a complete set of eigenvectors). The matrix
P is then the matrix of eigenvectors and the matrix D contains the
corresponding eigenvalues on the diagonal.

Determining whether or not a matrix An⇥n is diagonalizable is a little
tricky. Having rank(A) = n is not a sufficient condition for having n linearly
independent eigenvectors. The following matrix stands as a counter example:

A =

0

@
�3 1 �3
20 3 10
2 �2 4

1

A

This matrix has full rank but only two linearly independent eigenvectors. For-
tunately, for our primary application of diagonalization, we will be dealing
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with a symmetric matrix, which can always be diagonalized. In fact, symmet-
ric matrices have an additional property which makes this diagonalization
particularly nice, as we will see in Chapter 11.

10.2 Geometric Interpretation of
Eigenvalues and Eigenvectors

Since any scalar multiple of an eigenvector is still an eigenvector, let’s consider
for the present discussion unit eigenvectors x of a square matrix A - those with
length kxk = 1. By the definition, we know that

Ax = lx

We know that geometrically, if we multiply x by A, the resulting vector points
in the same direction as x. Geometrically, it turns out that multiplying the unit
circle or unit sphere by a matrix A carves out an ellipse, or an ellipsoid. We
can see eigenvectors visually by watching how multiplication by a matrix A
changes the unit vectors. Figure 10.1 illustrates this. The blue arrows represent
(a sampling of) the unit circle, all vectors x for which kxk = 1. The red
arrows represent the image of the blue arrows after multiplication by A, or
Ax for each vector x. We can see how almost every vector changes direction
when multiplied by A, except the eigenvector directions which are marked in
black. Such a picture provides a nice geometrical interpretation of eigenvectors
for a general matrix, but we will see in Chapter 11 just how powerful these
eigenvector directions are when we look at symmetric matrix.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3
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2

3

4

Figure 10.1: Visualizing eigenvectors (in black) using the image (in red) of the
unit sphere (in blue) after multiplication by A.
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Exercises

1. Show that v is an eigenvector of A and find the corresponding eigenvalue:

a. A =

✓
1 2
2 1

◆
v =

✓
3
�3

◆

b. A =

✓
�1 1
6 0

◆
v =

✓
1
�2

◆

c. A =

✓
4 �2
5 �7

◆
v =

✓
4
2

◆

2. Show that l is an eigenvalue of A and list two eigenvectors corresponding
to this eigenvalue:

a. A =

✓
0 4
�1 5

◆
l = 4

b. A =

✓
0 4
�1 5

◆
l = 1

3. Based on the eigenvectors you found in exercises 2, can the matrix A be
diagonalized? Why or why not? If diagonalization is possible, explain
how it would be done.

4. Can a rectangular matrix have eigenvalues/eigenvectors?


