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CHAPTER 1
FACTOR ANALYSIS

Factor Analysis is about looking for underlying relationships or associations. In
that way, factor analysis is a correlational study of variables, aiming to group or
cluster variables along dimensions. It may also be used to provide an estimate
(factor score) of a latent construct which is a linear combination of variables.
For example, a standardized test might ask hundreds of questions on a variety
of quantitative and verbal subjects. Each of these questions could be viewed
as a variable. However, the quantitative questions collectively are meant to
measure some latent factor, that is the individual’s quantitative reasoning. A
Factor Analysis might be able to reveal these two latent factors (quantitative
reasoning and verbal ability) and then also provide an estimate (score) for each
individual on each factor.

Any attempt to use factor analysis to summarize or reduce a set to data
should be based on a conceptual foundation or hypothesis. It should be
remembered that factor analysis will produce factors for most sets of data.
Thus, if you simply analyze a large number of variables in the hopes that
the technique will “figure it out", your results may look as though they are
grasping at straws. The quality or meaning/interpretation of the derived
factors is best when related to a conceptual foundation that existed prior to the
analysis.

1.1 Assumptions of Factor Analysis

1. No outliers in the data set

2. Adequate sample size
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• As a rule of thumb, maintain a ratio of variables to factors of at least
3 (some say 5). This depends on the application.

• You should have at least 10 observations for each variable (some say
20). This often depends on what value of factor loading you want to
declare as significant. See Table 1.1 for the details on this.

3. No perfect multicollinearity

4. Homoskedasticity not required between variables

• All variances not required to be equal

5. Linearity of variables desired - only models linear correlation between
variables

6. Interval data (as opposed to nominal)

7. Measurement error on the variables/observations has constant variance
and is, on average, 0

8. Normality is not required

Sample Size
Needed for Significance Factor Loading

350 .30
250 .35
200 .40
150 .45
120 .50
100 .55
85 .60
70 .65
60 .70
50 .75

Table 1.1: Factor loadings are the correlation of each variable and the factor.
This table is a guide for the sample sizes necessary to consider a factor loading
significant. For example, in a sample of 100, factor loadings of 0.55 are
considered significant. In a sample size of 70, however, factor loadings must
reach 0.65 to be considered significant. Significance based on 0.05 level, a
power level of 80 percent. Source: Computations made with SOLO Power Analysis,
BMDP Statistical Software, Inc., 1993



1.2. Determining Factorability 3

1.2 Determining Factorability

Before we even begin the process of factor analysis, we have to do some
preliminary work to determine whether or not the data even lends itself to this
technique. If none of our variables are correlated, then we cannot group them
together in any meaningful way! Bartlett’s Sphericity Test and the KMO index
are two statistical tests for whether or not a set of variables can be factored.
These tests do not provide information about the appropriate number of factors,
only whether or not such factors even exist.

1.2.1 Visual Examination of Correlation Matrix

Depending on how many variables you are working with, you may be able to
determine whether or not to proceed with factor analysis by simply examining
the correlation matrix. With this examination, we are looking for two things:

1. Correlations that are significant at the 0.01 level of significance. At least
half of the correlations should be significant in order to proceed to the
next step.

2. Correlations are “sufficient” to justify applying factor analysis. As a rule
of thumb, at least half of the correlations should be greater than 0.30.

1.2.2 Barlett’s Sphericity Test

Barlett’s sphericity test checks if the observed correlation matrix is significantly
different from the identity matrix. Recall that the correlation of two variables is
equal to 0 if and only if they are orthogonal (and thus completely uncorrelated).
When this is the case, we cannot reduce the number of variables any further,
neither PCA nor Factor Analysis will be able to compress the information
reliably into fewer dimensions. For Barlett’s test,

H0 = The variables are orthogonal

Which implies that there are no underlying factors to be uncovered. Obviously,
we must be able to reject this hypothesis for a meaningful result in PCA.

1.2.3 Kaiser-Meyer-Olkin (KMO) Measure of Sampling Ade-
quacy

The goal of the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is
similar to that of Bartlett’s test in that it checks if we can factorize efficiently the
original variables. However, the KMO measure is based on the idea of partial
correlation. The correlation matrix is always the starting point. We know that the
variables are more or less correlated, but the correlation between two variables
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can be influenced by the others. So, we use the partial correlation in order
to measure the relation between two variables by removing the effect of the
remaining variables. The KMO index compares the raw values of correlations
between variables and those of the partial correlations. If the KMO index is
high (⇡ 1), then PCA can act efficiently; if the KMO index is low (⇡ 0), then
PCA is not relevant. Generally a KMO index greater than 0.5 is considered
acceptable to proceed with factor analysis. Table 1.2 contains the information
about interpretting KMO results that was provided in the original 1974 paper.

KMO value
Degree of

Common Variance
0.90 to 1.00 Marvelous
0.80 to 0.89 Middling
0.60 to 0.69 Mediocre
0.50 to 0.59 Miserable
0.00 to 0.49 Don’t Factor

Table 1.2: Interpretting the KMO value. [?]

So, for example, if you have a survey with 100 questions/variables and
you obtained a KMO index of 0.61, this tells you that the degree of common
variance between your variables is mediocre, on the border of being miserable.
While factor analysis may still be appropriate in this case, you will find that
such an analysis will not account for a substantial amount of variance in your
data. It may still account for enough to draw some meaningful conclusions,
however.

1.3 Communalities

You can think of communalities as multiple R2 values for regression models
predicting the variables of interest from the factors (the reduced number of
factors that your model uses). The communality for a given variable can be
interpreted as the proportion of variation in that variable explained by the
chosen factors.

Take for example the SAS output for factor analysis on the Iris dataset
shown in Figure 1.1. The factor model (which settles on only one single factor)
explains 98% of the variability in petal length. In other words, if you were to
use this factor in a simple linear regression model to predict petal length, the
associated R2 value should be 0.98. Indeed you can verify that this is true. The
results indicate that this single factor model will do the best job explaining
variability in petal length, petal width, and sepal length.
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Figure 1.1: SAS output for PROC FACTOR using Iris Dataset

One assessment of how well a factor model is doing can be obtained from
the communalities. What you want to see is values that are close to one. This
would indicate that the model explains most of the variation for those variables.
In this case, the model does better for some variables than it does for others.

If you take all of the communality values, ci and add them up you can get
a total communality value:

p

Â
i=1

bci =
k

Â
i=1

bli

Here, the total communality is 2.918. The proportion of the total variation
explained by the three factors is

2.918
4

⇡ 0.75.

The denominator in that fraction comes from the fact that the correlation matrix
is used by default and our dataset has 4 variables. Standardized variables have
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variance of 1 so the total variance is 4. This gives us the percentage of variation
explained in our model. This might be looked at as an overall assessment of
the performance of the model. The individual communalities tell how well the
model is working for the individual variables, and the total communality gives
an overall assessment of performance.

1.4 Number of Factors

A good rule of thumb for determining the number of factors is to only choose
factors with associated eigenvalue (or variance) greater than 1. Since the
correlation matrix is used for factor analysis, we want our factors to explain
more variance than any individual variable from our dataset. If this rule
of thumb produces too many factors, it is reasonable to raise that limiting
condition only if the number of factors still explains a reasonable amount of
the total variance.

1.5 Rotation of Factors

The purpose of rotating factors is to make them more interpretable. If factor
loadings are relatively constant across variables, they don’t help us find latent
structure or clusters of variables. This will often happen in PCA when the
goal is only to find directions of maximal variance. Thus, once the number
of components/factors is fixed and a projection of the data onto a lower-
dimensional subspace is done, we are free to rotate the axes of the result
without losing any variance. The axes will no longer be principal components!
The amount of variance explained by each factor will change, but the total
amount of variance in the reduced data will stay the same because all we have
done is rotate the basis. The goal is to rotate the factors in such a way that the
loading matrix develops a more sparse structure. A sparse loading matrix (one
with lots of very small entries and few large entries) is far easier to interpret in
terms of finding latent variable groups.

The two most common rotations are varimax and quartimax. The goal of
varimax rotation is to maximize the squared factor loadings in each factor, i.e.
to simplify the columns of the factor matrix. In each factor, the large loadings
are increased and the small loadings are decreased so that each factor has only
a few variables with large loadings. In contrast, the goal of quartimax rotation
is to simply the rows of the factor matrix. In each variable the large loadings
are increased and the small loadings are decreased so that each variable will
only load on a few factors. Which of these factor rotations is appropriate


