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CHAPTER 11

PRINCIPAL COMPONENTS ANALYSIS

We now have the tools necessary to discuss one of the most important con-
cepts in mathematical statistics: Principal Components Analysis (PCA). PCA
involves the analysis of eigenvalues and eigenvectors of the covariance or
correlation matrix. Its development relies on the following important facts:

All n x n real valued symmetric matrices (like the covariance and corre-
lation matrix) have two very important properties:

1. They have a complete set of # linearly independent eigenvectors,
{v1,..., vy}, corresponding to eigenvalues

M2Ay 22 Ay
2. Furthermore, these eigenvectors can be chosen to be orthonormal
so that if V = [vq|...|vy] then
VIV =1
or equivalently, V-1 = VT,
Letting D be a diagonal matrix with D;; = A;, by the definition of
eigenvalues and eigenvectors we have for any symmetric matrix S,

SV=VD

Thus, any symmetric matrix S can be diagonalized in the following
way:
VsV =D
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Covariance and Correlation matrices (when there is no perfect multi-
collinearity in variables) have the additional property that all of their
eigenvalues are positive (nonzero). They are positive definite matrices.

Now that we know we have a complete set of eigenvectors, it is common
to order them according to the magnitude of their corresponding eigenvalues.
From here on out, we will use (A1, vy) to represent the largest eigenvalue of a
matrix and its corresponding eigenvector. When working with a covariance or
correlation matrix, this eigenvector associated with the largest eigenvalue is
called the first principal component and points in the direction for which the
variance of the data is maximal. Example 11.0.1 illustrates this point.

Example 11.0.1: Eigenvectors of the Covariance Matrix

Suppose we have a matrix of data for 10 individuals on 2 variables, x;
and xp. Plotted on a plane, the data appears as follows:

X2

X4




123

Our data matrix for these points is:

NN U WNN R
OO N R,

the means of the variables in X are:

= (37):

When thinking about variance directions, our first step should be to
center the data so that it has mean zero. Eigenvectors measure the
spread of data around the origin. Variance measures spread of data

around the mean. Thus, we need to equate the mean with the origin.

To center the data, we simply compute
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X, =X—ex! =

© NN U R WNN R
o e W= NN N T N N
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—34
—24
—24
—14
—-04
0.6
1.6
1.6
2.6
3.6

—2.7
—-2.7
0.3
—2.7
0.3
—-1.7
0.3
2.3
23
4.3

Examining the new centered data, we find that we’ve only translated
our data in the plane - we haven’t distorted it in any fashion.
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Thus the covariance matrix is:

1.1y (56 48
_9(XCXC)_<4.8 6.0111)

The eigenvalue and eigenvector pairs of X are (rounded to 2 decimal
places) as follows:

z

0.69 —0.72
(A1, v1) = <10.6100, {0.72}) and (Ay, v2) = (1.0012, { 0.69 D

Let’s plot the eigenvector directions on the same graph:
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The eigenvector v; is called the first principal component. It is the di-
rection along which the variance of the data is maximal. The eigenvector
v is the second principal component. In general, the second principal
component is the direction, orthogonal to the first, along which the
variance of the data is maximal (in two dimensions, there is only one
direction possible.)

\. J

Why is this important? Let’s consider what we’ve just done. We started
with two variables, x; and xp, which appeared to be correlated. We then
derived new variables, vi and vy, which are linear combinations of the original
variables:

vi = 0.69x; +0.72x, (11.1)
v, = —0.72x; 4 0.69%, (11.2)

These new variables are completely uncorrelated. To see this, let’s represent
our data according to the new variables - i.e. let’s change the basis from
B1 = [x1,x2] to By = [v1, Vo).

Example 11.0.2: The Principal Component Basis

Let’s express our data in the basis defined by the principal components.
We want to find coordinates (in a 2 x 10 matrix A) such that our original
(centered) data can be expressed in terms of principal components. This
is done by solving for A in the following equation (see Chapter 9 and
note that the rows of X define the points rather than the columns):

X. = AVT (11.3)
—-34 =27 an ain
-24 =27 an1 az
—2.4 0.3 asy asp
—-14 -27 as asn
—04 0.3 as1 asp VT
0.6 —-1.7 a ae1 aen <V§) (114)
1.6 0.3 arzy azn
1.6 2.3 agi agn
2.6 2.3 ag1 a9
3.6 4.3 a101 410,22

Conveniently, our new basis is orthonormal meaning that V is an
orthogonal matrix, so
A =XV.
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The new data coordinates reflect a simple rotation of the data around
the origin:

L
)
A

Visually, we can see that the new variables are uncorrelated. You may
wish to confirm this by calculating the covariance. In fact, we can do
this in a general sense. If A = XV is our new data, then the covariance
matrix is diagonal:

1
Ly = ATA
A n—1
1
= —XV)I(XV)
1
= mVT((XcTXc)V

= - i 1VT((n -1)Zx)V

= VI(Zx)V
= vI(vDVT)Vv
= D

Where £y = VDV comes from the diagonalization in Theorem 11.0.1.
By changing our variables to principal components, we have managed
to “hide” the correlation between x; and x; while keeping the spa-
cial relationships between data points in tact. Transformation back to
variables x; and x; is easily done by using the linear relationships in
Equations 11.1 and 11.2.
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11.1 Comparison with Least Squares

In least squares regression, our objective is to maximize the amount of variance
explained in our target variable. It may look as though the first principal
component from Example 11.0.1 points in the direction of the regression line.
This is not the case however. The first principal component points in the
direction of a line which minimizes the sum of squared orthogonal distances
between the points and the line. Regressing x, on xj, on the other hand,
provides a line which minimizes the sum of squared vertical distances between
points and the line. This is illustrated in Figure 11.1.
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Figure 11.1: Principal Components vs. Regression Lines

The first principal component about the mean of a set of points can be
represented by that line which most closely approaches the data points. In
contrast, linear least squares tries to minimize the distance in the y direction
only. Thus, although the two use a similar error metric, linear least squares
is a method that treats one dimension of the data preferentially, while PCA
treats all dimensions equally.

11.2 Covariance or Correlation Matrix?

Principal components analysis can involve eigenvectors of either the covariance
matrix or the correlation matrix. When we perform this analysis on the
covariance matrix, the geometric interpretation is simply centering the data
and then determining the direction of maximal variance. When we perform
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this analysis on the correlation matrix, the interpretation is standardizing the
data and then determining the direction of maximal variance. The correlation
matrix is simply a scaled form of the covariance matrix. In general, these two
methods give different results, especially when the scales of the variables are
different.

The covariance matrix is the default for R. The correlation matrix is the
default in SAS. The covariance matrix method is invoked by the option:

proc princomp data=X cov;
var x1--x10;
run;

Choosing between the covariance and correlation matrix can sometimes
pose problems. The rule of thumb is that the correlation matrix should be used
when the scales of the variables vary greatly. In this case, the variables with the
highest variance will dominate the first principal component. The argument
against automatically using correlation matrices is that it is quite a brutal way
of standardizing your data.

11.3 Applications of Principal Components

Principal components have a number of applications across many areas of
statistics. In the next sections, we will explore their usefulness in the context of
dimension reduction. In Chapter 14 we will look at how PCA is used to solve
the issue of multicollinearity in biased regression.

11.3.1 PCA for dimension reduction

It is quite common for an analyst to have too many variables. There are two
different solutions to this problem:

1. Feature Selection: Choose a subset of existing variables to be used in a
model.

2. Feature Extraction: Create a new set of features which are combinations
of original variables.

Feature Selection

Let’s think for a minute about feature selection. What are we really doing
when we consider a subset of our existing variables? Take the two dimensional
data in Example 11.0.2 (while two-dimensions rarely necessitate dimension
reduction, the geometrical interpretation extends to higher dimensions as
usual!). The centered data appears as follows:
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X2

Now say we perform some kind of feature selection (there are a number of
ways to do this, chi-square tests for instances) and we determine that the
variable x, is more important than x;. So we throw out x; and we’ve reduced
the dimensions from p = 2 to k = 1. Geometrically, what does our new data
look like? By dropping x; we set all of those horizontal coordinates to zero. In
other words, we project the data orthogonally onto the x, axis:

X2 X2

X1 X

(a) Projecting Data Orthogonally (b) New One-Dimensional Data

Figure 11.2: Geometrical Interpretation of Feature Selection

Now, how much information (variance) did we lose with this projection?
The total variance in the original data is

[Ix1[[* + [1x2|*.
The variance of our data reduction is

212
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Thus, the proportion of the total information (variance) we’ve kept is

||><2H2 6.01
= - 51.70/0.
[x1][2+ [Ix2]|2 5.6 +6.01

Our reduced dimensional data contains only 51.7% of the variance of the
original data. We’ve lost a lot of information!

The fact that feature selection omits variance in our predictor variables
does not make it a bad thing! Obviously, getting rid of variables which have
no relationship to a target variable (in the case of supervised modeling like
prediction and classification) is a good thing. But, in the case of unsupervised
learning techniques, where there is no target variable involved, we must be
extra careful when it comes to feature selection. In summary,

* Feature Selection is important. Examples include:

— Removing variables which have little to no impact on a target vari-
able in supervised modeling (forward/backward/stepwise selec-
tion).

- Removing variables which have obvious strong correlation with
other predictors.

— Removing variables that are not interesting in unsupervised learning
(For example, you may not want to use the words “th” and “of”
when clustering text).

* Feature Selection is an orthogonal projection of the original data onto the
span of the variables you choose to keep.

* Feature selection should always be done with care and justification.

— In regression, could create problems of endogeneity (errors corre-
lated with predictors - omitted variable bias).

— For unsupervised modelling, could lose important information.

Feature Extraction

PCA is the most common form of feature extraction. The rotation of the space
shown in Example 11.0.2 represents the creation of new features which are
linear combinations of the original features. If we have p potential variables
for a model and want to reduce that number to k, then the first k principal
components combine the individual variables in such a way that is guaranteed
to capture as much “information” (variance) as possible. Again, take our
two-dimensional data as an example. When we reduce our data down to one-
dimension using principal components, we essentially do the same orthogonal
projection that we did in Feature Selection, only in this case we conduct that
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projection in the new basis of principal components. Recall that for this data,
our first principal component v; was

o (069
1= \o073)"

Projecting the data onto the first principal component is illustrated in Figure
11.3 How much variance do we keep with k principal components? The
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(a) Projecting Data Orthogonally (b) New One-Dimensional Data

Figure 11.3: Illustration of Feature Extraction via PCA

proportion of variance explained by each principal component is the ratio of
the corresponding eigenvalue to the sum of the eigenvalues (which gives the
total amount of variance in the data).

The proportion of variance explained by the projection of the data onto
principal component v; is
Ai

=
Zj:l Aj

Similarly, the proportion of variance explained by the projection of the
data onto the first k principal components (k < j) is

i A
P
Yiahj

In our simple 2 dimensional example we were able to keep
M 10.61
M+ A, 1061+ 1.00
of our variance in one dimension.

= 91.38%




