
1

CHAPTER 1
SINGULAR VALUE DECOMPOSITION (SVD)

The Singular Value Decomposition (SVD) is one of the most important concepts
in applied mathematics. It is used for a number of application including
dimension reduction and data analysis. Principal Components Analysis (PCA)
is a special case of the SVD. Let’s start with the formal definition, and then see
how PCA relates to that definition.

Definition 1.0.1: Singular Value Decomposition

For any m⇥ n matrix A with rank(A) = r, there are orthogonal matrices
U

m⇥m

and V

n⇥n

and a diagonal matrix D

r⇥r

= diag(s1, s2, . . . , s
r

) such
that

A = U

✓
D 0

0 0

◆

| {z }
m ⇥ n

V

T with s1 � s2 � · · · � s
r

� 0 (1.1)

The s
i

’s are called the nonzero singular values of A. (When
r < p = min{m, n} (i.e. when A is not full-rank), A is said to have
an additional p � r zero singular values). This factorization is called
a singular value decomposition of A, and the columns of U and
V are called the left- and right-hand singular vectors for A, respectively.

Properties of the SVD

• The left-hand singular vectors are a set of orthonormal eigenvec-
tors for AA

T .

• The right-hand singular vectors are a set of orthonormal eigenvec-
tors for A

T

A.

1.1. Resolving a Matrix into Components 2

• The singular values are the square roots of the eigenvalues for
A

T

A and AA

T , as these matrices have the same eigenvalues.

When we studied PCA, one of the goals was to find the new coordinates, or
scores, of the data in the principal components basis. If our original (centered
or standardized) data was contained in the matrix X and the eigenvectors of
the covariance/correlation matrix (XT

X) were columns of a matrix V, then to
find the scores (call these S) of the observations on the eigenvectors we used
the following equation:

X = SV

T .

This equation mimics Equation ?? because the matrix V

T in Equation ?? is also
a matrix of eigenvectors for A

T

A. This means that the principal component
scores S are a set of unit eigenvectors for AA

T scaled by the singular values in
D:

S = U

✓
D 0

0 0

◆
.

1.1 Resolving a Matrix into Components

One of the primary goals of the singular value decomposition is to resolve
the data in A into r mutually orthogonal components by writing the matrix
factorization as a sum of outer products using the corresponding columns of
U and rows of V

T :

A = U

✓
D 0

0 0

◆
V

T =
�
u1 u2 . . . u

m

�

0

BBBBBBBBB@

s1 0 . . . 0 0

0
. . . 0

... 0
... 0 s

r

0
...

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

1

CCCCCCCCCA

0

BBB@

v

T

1
v

T

2
...

v

T

n

1

CCCA

= s1u1v

T

1 + s2u2v

T

2 + · · ·+ s
r

u

r

v

T

r

.

s1 � s2 � . . . s
r

For simplicity, let Z

i

= u

i

v

T

i

act as basis matrices for this expansion, so we have

A =
r

Â
i=1

s
i

Z

i

. (1.2)

This representation can be regarded as a Fourier expansion. The coefficient
(singular value) s

i

can be interpreted as the proportion of A lying in the

1.1. Resolving a Matrix into Components 3

“direction" of Z

i

. When s
i

is small, omitting that term from the expansion will
cause only a small amount of the information in A to be lost. This fact has
important consequences for compression and noise reduction.

1.1.1 Data Compression

We’ve already seen how PCA can be used to reduce the dimensions of our
data while keeping the most amount of variance. The way this is done is by
simply ignoring those components for which the proportion of variance is
small. Supposing we keep k principal components, this amounts to truncating
the sum in Equation ?? after k terms:

A ⇡
k

Â
i=1

s
i

Z

i

. (1.3)

As it turns out, this truncation has important consequences in many applica-
tions. One example is that of image compression. An image is simply an array
of pixels. Supposing the image size is m pixels tall by n pixels wide, we can
capture this information in an m ⇥ n matrix if the image is in grayscale, or an
m ⇥ 3n matrix for a [r,g,b] color image (we’d need 3 values for each pixel to
recreate the pixel’s color). These matrices can get very large (a 6 megapixel
photo is 6 million pixels).

Rather than store the entire matrix, we can store an approximation to the
matrix using only a few (well, more than a few) singular values and singular
vectors.

This is the basis of image compression. An approximated photo will not be
as crisp as the original - some information will be lost - but most of the time
we can store much less than the original matrix and still get a good depiction
of the image.

1.1.2 Noise Reduction

Many applications arise where the relevant information contained in a matrix
is contaminated by a certain level of noise. This is particularly common with
video and audio signals, but also arises in text data and other types of (usually
high dimensional) data. The truncated SVD (Equation ??) can actually reduce
the amount of noise in data and increase the overall signal-to-noise ratio under
certain conditions.

Let’s suppose, for instance, that our matrix A

m⇥n

contains data which is
contaminated by noise. If that noise is assumed to be random (or nondirec-
tional) in the sense that the noise is distributed more or less uniformly across
the components Z

i

, then there is just as much noise “in the direction” of one Z

i

as there is in the other. If the amount of noise along each direction is approx-
imately the same, and the s

i

’s tell us how much (relevant) information in A

1.1. Resolving a Matrix into Components 4

is directed along each component Z

i

, then it must be that the ratio of “signal”
(relevant information) to noise is decreasing across the ordered components,
since

s1 � s2 � · · · � s
r

implies that the signal is greater in earlier components. So letting SNR(s
i

Z

i

)
denote the signal-to-noise ratio of each component, we have

SNR(s1Z1) � SNR(s2Z2) � · · · � SNR(s
r

Z

r

)

This explains why the truncated SVD,

A ⇡
k

Â
i=1

s
i

Z

i

where k < r

can, in many scenarios, filter out some of the noise without losing much of the
significant information in A.

1.1.3 Latent Semantic Indexing

Text mining is another area where the SVD is used heavily. In text mining, our
data structure is generally known as a Term-Document Matrix. The documents

are any individual pieces of text that we wish to analyze, cluster, summarize or
discover topics from. They could be sentences, abstracts, webpages, or social
media updates. The terms are the words contained in these documents. The
term-document matrix represents what’s called the “bag-of-words” approach -
the order of the words is removed and the data becomes unstructured in the
sense that each document is represented by the words it contains, not the order
or context in which they appear. The (i, j) entry in this matrix is the number of
times term j appears in document i.

Definition 1.1.1: Term-Document Matrix

Let m be the number of documents in a collection and n be the number
of terms appearing in that collection, then we create our term-document

1.1. Resolving a Matrix into Components 5

matrix A as follows:

term 1 term j term n

A

m⇥n

=

Doc 1

Doc i

Doc m

0

BBBBBB@

|
|
|

� � f

ij

1

CCCCCCA

where f

ij

is the frequency of term j in document i. A binary term-
document matrix will simply have A

ij

= 1 if term j is contained in
document i.

Term-document matrices tend to be large and sparse. Term-weighting
schemes are often used to downplay the effect of commonly used words and
bolster the effect of rare but semantically important words. The most popular
weighting method is known as “Term Frequency-Inverse Document Frequency”
(TF-IDF). For this method, the raw term-frequencies f

ij

in the matrix A are
multiplied by global weights (inverse document frequencies), w

j

, for each term.
These weights reflect the commonality of each term across the entire collection.
The inverse document frequency of term i is:

w

j

= log
✓

total # of documents
documents containing term j

◆

To put this weight in perspective for a collection of n = 10, 000 documents
we have 0  w

j

 9.2, where w

j

= 0 means the word is contained in every
document (i.e. it’s not important semantically) and w

j

= 9.2 means the word
is contained in only 1 document (i.e. it’s quite important). The document
vectors are often normalized to have unit 2-norm, since their directions (not
their lengths) in the term-space is what characterizes them semantically.

The noise-reduction property of the SVD was extended to text processing in
1990 by Susan Dumais et al, who named the effect Latent Semantic Indexing (LSI).
LSI involves the singular value decomposition of the term-document matrix
defined in Definition ??. In other words, it is like a principal components
analysis using the unscaled, uncentered inner-product matrix A

T

A. If the
documents are normalized to have unit length, this is a matrix of cosine

similarities (see Chapter ??). In text-mining, the cosine similarity is the most

common measure of similarity between documents. If the term-document
matrix is binary, this is often called the co-occurrence matrix because each
entry gives the number of times two words occur in the same document.

It certainly seems logical to view text data in this context as it contains
both an informative signal and semantic noise. LSI quickly grew roots in the

1.1. Resolving a Matrix into Components 6

information retrieval community, where it is often used for query process-
ing. The idea is to remove semantic noise, due to variation and ambiguity
in vocabulary and presentation style, without losing significant amounts of
information. For example, a human may not differentiate between the words
“car” and “automobile”, but indeed the words will become two separate entities
in the raw term-document matrix. The main idea in LSI is that the realignment
of the data into fewer directions should force related documents (like those
containing “car” and “automobile”) closer together in an angular sense, thus
revealing latent semantic connections.

Purveyors of LSI suggest that the use of the Singular Value Decomposition to
project the documents into a lower-dimensional space results in a representation
which reflects the major associative patterns of the data while ignoring less
important influences. This projection is done with the simple truncation of the
SVD shown in Equation ??.

As we have seen with other types of data, the very nature of dimension
reduction makes possible for two documents with similar semantic properties
to be mapped closer together. Unfortunately, the mixture of signs (positive
and negative) in the singular vectors (think principal components) makes
the decomposition difficult to interpret. While the major claims of LSI are
legitimate, this lack of interpretability is still conceptually problematic for
some folks. In order to make this point as clear as possible, consider the
original “term basis” representation for the data, where each document (from
a collection containing m total terms in the dictionary) could be written as:

A

j

=
m

Â
i=1

f

ij

e

i

where f

ij

is the frequency of term i in the document, and e

i

is the i

th column of
the m⇥m identity matrix. The truncated SVD gives us a new set of coordinates
(scores) and basis vectors (principal component features):

A

j

⇡
r

Â
i=1

a
i

u

i

but the features u

i

live in the term space, and thus ought to be interpretable
as a linear combination of the original “term basis.” However the linear
combination, having both positive and negative coefficients, is semantically
meaningless in context - These new features cannot, generally, be thought of as
meaningful topics.

