Load the Data, Explore the Data

UK FOOD DATA

The data for this example can be read directly from our course webpage. When we first examine the data, we will see
that the rows correspond to different types of food/drink and the columns correspond to the 4 countries within the UK.
Our first matter of business is transposing this data so that the 4 countries become our observations (i.e. rows).

library(reshape2) #melt data matrix into 3 columns

library(ggplot2) #heatmap

>
>
> food=read.csv("http://birch.iaa.ncsu.edu/"slrace/LinearAlgebra2021/Code/ukfood.csv",
+
>

head (food)

header=TRUE,row.names=1)

Cheese
Carcass meat
Other meat
Fish

Fats and oils
Sugars

105 103 103
245 227 242
685 803 750
147 160 122
193 235 184
156 175 147

England Wales Scotland N.Ireland

66
267
586

93
209
139

> food=as.data.frame(t(food))

> head(food)

360
365
337
334

Cheese Carcass meat Other meat Fish Fats and oils Sugars
England 105 245 685 147 193 156
Wales 103 227 803 160 235 175
Scotland 103 242 750 122 184 147
N.Ireland 66 267 586 93 209 139
Fresh potatoes Fresh Veg Other Veg Processed potatoes Processed Veg
England 720 253 488 198
Wales 874 265 570 203
Scotland 566 171 418 220
N.Ireland 1033 143 355 187
Fresh fruit Cereals Beverages Soft drinks Alcoholic drinks
England 1102 1472 57 1374 375
Wales 1137 1582 73 1256 475
Scotland 957 1462 53 1572 458
N.Ireland 674 1494 47 1506 135
Confectionery
England 54
Wales 64
Scotland 62
N.Ireland 41

Next we will visualize the information in this data using a simple heat map. To do this we will standardize and then
melt the data using the reshape2 package, and then use a ggplot() heatmap.



> food.std = scale(food, center=T, scale = T)

> food.melt = melt(food.std, id.vars = row.names(food.std), measure.vars = 1:17)
> ggplot(data = food.melt, aes(x=Varl, y=Var2, fill=value)) +

+ geom_tile(color = "white")+

+ scale_fill_gradient2(low = "blue", high = "red", mid = "white",

+ midpoint = 0, limit = c(-2,2), space = "Lab"

+ ) + theme_minimal()+

+  theme(axis.title.x = element_blank(),axis.title.y = element_blank(),

+ axis.text.y = element_text(face = 'bold', size = 12, colour = 'black'),
+ axis.text.x = element_text(angle = 45, vjust = 1, face = 'bold',

+ size = 12, colour = 'black', hjust = 1))+coord_fixed()
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prcomp() function for PCA

The prcomp() function is the one I most often recommend for reasonably sized principal component calculations in R.
This function returns a list with class "prcomp" containing the following components (from help prcomp):

1. sdev: the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the
covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix).

2. rotation: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors). The function
princomp returns this in the element loadings.

3. x: if retx is true the value of the rotated data (i.e. the scores) (the centred (and scaled if requested) data multiplied
by the rotation matrix) is returned. Hence, cov(x) is the diagonal matrix diag(sdev?). For the formula method,
napredict() is applied to handle the treatment of values omitted by the na.action.

4. center, scale: the centering and scaling used, or FALSE.

The option scale = TRUE inside the prcomp() function instructs the program to use correlation PCA. The default is
covariance PCA.

> pca=prcomp(food, scale = T)

This first plot just looks at magnitudes of eigenvalues - it is essentially the screeplot in barchart form.
The next plot views our four datapoints (locations) projected onto the 2-dimensional subspace (from 17 dimensions)
that captures as much information (i.e. variance) as possible.



> summary (pca)

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 3.4082 2.0562 1.07524 6.344e-16
Proportion of Variance 0.6833 0.2487 0.06801 0.000e+00
Cumulative Proportion 0.6833 0.9320 1.00000 1.000e+00

> plot(pca, main = "Bar-style Screeplot")

Bar—style Screeplot
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> plot(pca$x,

+ xlab = "Principal Component 1",
+ ylab = "Principal Component 2",
+ main = 'The four observations projected into 2-dimensional space')

> text(pca$x[,1], pca$x[,2],row.names(food))

The four observations projected into 2—dimensional space
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The BiPlot

Now we can also view our original variable axes projected down onto that same space!

> biplot(pca, cex = c(1.5, 1), col = c('black','red'),

+ xlim = ¢(-0.8,0.8), ylim = c(-0.6,0.7))
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Figure 1: BiPlot: The observations and variables projected onto the same plane.



Formatting the biplot for readability

I will soon introduce the autoplot() function from the ggfortify() package, but for now I just want to show you that you
can specify which variables (and observations) to include in the biplot by directly specifying the loadings matrix and
scores matrix of interest in the biplot function:

> desired.variables = c(2,4,6,8,10)
> biplot(pca$x, pca$rotation[desired.variables,1:2], cex = c(1.5, 1),

+ col = c('black','red'), xlim = c(-6,5), ylim = c(-4,4))
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What are all these numbers on the axes?

Those numbers relate to the scores on PC1 and PC2 (sometimes normalized so that each new variable has variance 1
- and sometimes not) and the loadings on PC1 and PC2 (sometimes normalized so that each variable vector is a unit
vector - and sometimes scaled by the eigenvalues or square roots of the eigenvalues in some fashion).

Generally, I've never found it useful to hunt down how each package is rendering the biplot, as they should be
providing the same information regardless of the numbers on the axes. We don’t actually use those numbers to help us
draw conclusions. We use the directions of the arrows and the layout of the points in reference to those direction arrows.



