FACTOR ANALYSIS

Read in the Big5 Personality test dataset, which contains likert scale responses (five point scale where
1=Disagree, 3=Neutral, 5=Agree. 0 = missing) on 50 different questions in columns 8 through 57. The
questions, labeled E1-E10 (E=extroversion), N1-N10 (N=neuroticism), A1-A10 (A=agreeableness), C1-
C10 (C=conscientiousness), and O1-O10 (O=openness) all attempt to measure 5 key angles of human
personality. The first 7 columns contain demographic information coded as follows:

¢ Race Chosen from a drop down menu.

— 1=Mixed Race

— 2=Arctic (Siberian, Eskimo)

- 3=Caucasian (European)

— 4=Caucasian (Indian)

— 5=Caucasian (Middle East)
6=Caucasian (North African, Other)

7=Indigenous Australian

8=Native American

9=North East Asian (Mongol, Tibetan, Korean Japanese, etc)

10=Pacific (Polynesian, Micronesian, etc)

11=South East Asian (Chinese, Thai, Malay, Filipino, etc)

12=West African, Bushmen, Ethiopian
13=0ther (0=missed)

¢ Age Entered as text (individuals reporting age < 13 were not recorded)
¢ Engnat Response to "is English your native language?"

- I=yes
- 2=no
— O=missing
¢ Gender Chosen from a drop down menu

— 1=Male

— 2=Female
— 3=Other

— O=missing
¢ Hand "What hand do you use to write with?"

— 1=Right
— 2=Left
— 3=Both

— O=missing

> options(digits=2)
> load("big5.Rdata")

To perform the same analysis we did in SAS, we want to use Correlation PCA and rotate the axes with
a varimax transformation. We will start by performing the PCA. We need to set the option scale=T to
perform PCA on the correlation matrix rather than the default covariance matrix. We will only compute
the first 5 principal components because we have 5 personality traits we are trying to measure. We could
also compute more than 5 and take the number of components with eigenvalues >1 to match the default
output in SAS (without n=5 option).

> options(digits=5)
> pca.out = prcomp(bigb[,8:57], rank = 5, scale = T)

Remember the only difference between the default PROC PRINCOMP output and the default PROC
FACTOR output in SAS was the fact that the eigenvectors in PROC PRINCOMP were normalized to be
unit vectors and the factor vectors in PROC FACTOR were those same eigenvectors scaled by the square
roots of the eigenvalues. So we want to multiply each eigenvector column output in pca.out$rotation
(recall this is the loading matrix or matrix of eigenvectors) by the square root of the corresponding
eigenvalue given in pca.out$sdev. You'll recall that multiplying a matrix by a diagonal matrix on the right
has the effect of scaling the columns of the matrix. So we’ll just make a diagonal matrix, S with diagonal
elements from the pca.out$sdev vector and scale the columns of the pca.out$rotation matrix. Similarly,
the coordinates of the data along each component then need to be divided by the standard deviation to
cancel out this effect of lengthening the axis. So again we will multiply by a diagonal matrix to perform
this scaling, but this time, we use the diagonal matrix s ! =diag(1/(pca.out$sdev)).

Matrix multiplication in R is performed with the %% operator.

> fact.loadings = pca.out$rotation[,1:5] %x% diag(pca.out$sdev[1:5])
> fact.scores = pca.out$x[,1:5] %x*V%diag(l/pca.out$sdev([1:5])

> # PRINT OUT THE FIRST 5 ROWS OF EACH MATRIX FOR CONFIRMATION.

> fact.loadings[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]
E1 -0.52057 0.27735 -0.29183 0.13456 -0.25072
E2 0.51025 -0.35942 0.26959 -0.14223 0.21649
E3 -0.70998 0.15791 -0.11623 0.21768 -0.11303
E4 0.58361 -0.20341 0.31433 -0.17833 0.22788
E5 -0.65751 0.31924 -0.16404 0.12496 -0.21810

> fact.scores[1:5,1:5]

[,1]
[1,] -2.53286
[2,] 0.70216
[3,] -0.12575
[4,] 1.29926
[5,] -0.37359

[,2]
-1.16617
-1.22761

1.33180
1.17736
0.47716

[,3]
0.276244
1.095383
1.525208
0.044168
0.292680

[,4]
0.043229
1.615919

-1.163062
-0.784411
1.233652

[,5]
-0.069518
-0.562371
-2.949501

0.148903
0.406582

This should match the output from SAS and it does. Remember these columns are unique up to a
sign, so you'll see factor 4 does not have the same sign in both software outputs. This is not cause for
concern.

Factor Pattern
Factor1
-0.52057
0.51025
-0.70994
0.58361
-0.65751

Factor2
0.27735
-0.35042
0.15791
-0.20341
031924

Factord | Factord
-0.29183 -0.13456
0.26959 0.14223
-011623 -021768
0.31433 017833
-016404 -012496

Factor5
0.25072
-0.21649
011303
-0.22738
021810

Figure 1: Default (Unrotated) Factor Loadings Output by SAS

Factorl Factor? Factor3 Factord Factorb
1 -2.532863728 -1.166171578 02762436736 0043229458 00695173427
2 0702157328 1227610486 1.05538345586 -1.615518602 056237124
3 0125745005 13318024215 1.525208166 1.1630615745 29455010747
4 1.29925659525 1.1773603587 00441632582 0734411457 0148503358
5 0373535924 0477155618 02926800786 -1.233651596 0406582355

Figure 2: Default (Unrotated) Factor Scores Output by SAS

The next task we may want to undertake is a rotation of the factor axes according to the varimax
procedure. The most simple way to go about this is to use the varimax() function to find the optimal
rotation of the eigenvectors in the matrix pca.out$rotation. The varimax() function outputs both the new
set of axes in the matrix called loadings and the rotation matrix (rotmat) which performs the rotation
from the original principal component axes to the new axes. (i.e. if V contains the old axes as columns
and V contains the new axes and R is the rotation matrix then V = VR.) That rotation matrix can be used
to perform the same rotation on the scores of the observations. If the matrix U contains the scores for
each observation, then the rotated scores U are found by U=UR

PRINT

V V. V Vv VvV

varimax.
rotated.
rotated.

rotated.

out =

varimax(fact.loadings)

fact.loadings = fact.loadings %*J varimax.out$rotmat
fact.scores = fact.scores %*}, varimax.out$rotmat

OUT THE FIRST 5 ROWS OF EACH MATRIX FOR CONFIRMATION.
fact.loadings[1:5,]

[,1]
E1 -0.71232
E2 0.71592
E3 -0.66912
E4 0.73332
E5 -0.74534

[,2]
-0.0489043
-0.0031185
-0.2604049

0.1528552
-0.0757539

[,3]
0.010596
0.028946
0.131609

-0.023367
0.100875

[,4]
-0.03206926
0.03504236
0.01704690
0.00094685
-0.07140722

[,58]
0.055858
-0.121241
0.263679
-0.053219
0.218602

> rotated.fact.scores[1:5,]

[,1]
[1,] -1.09083
[2,] 0.85718
[3,] -0.92344
[4,] 0.61935
[5,] -0.39495

[,2]
-2.04516
-0.19268

2.58761
1.53087
-0.10893

[,3]
1.40699
1.07708
2.43566

-0.79225
-0.24892

[,4]
-0.38254
2.03665
-0.80840
-0.59901
0.99744

[,5]
0.5998386
-0.2178616
-0.1833138
-0.0064665
0.9567712

And again we can see that these line up with our SAS Rotated output, however the order does not
have to be the same! SAS conveniently reorders the columns according to the variance of the data along
that new direction. Since we have not done that in R, the order of the columns is not the same! Factors 1
and 2 are the same in both outputs, but SAS Factor 3 = R Factor 4 and SAS Factor 5 = (-1)* R Factor 4.
The coordinates are switched too so nothing changes in our interpretation. Remember, when you rotate

factors, you no longer keep the notion that the "first vector" explains the most variance unless you reorder
them so that is true (like SAS does).

Rotated Factor Pattern

Factor2
-0.04390
-0.00312
-0.26040
0.15285
-0.07575

Factor1
071232
-0.71592
066913
-0.73332
074534

Factor3
0.05587
-0.12124
0.26370
-0.05323
0.21862

Factord Factorb
0.01056 0.03206
0.02898 -0.03504
0.13156 -0.01706
-0.02334 -0.00094
0.10083 0.07140

Figure 3: Rotated Factor Loadings Output by SAS

Factorl Factor2 Factord Factord Factork
1.0508346478 -2.045148453 0.6000154906 1.40690028416 03825150554
.857146554 0152674827 0217753884 1.0771230635 -2.03664415
09235320133 258762625986 -0.183026967 24356354642 0.8083534524
619372918 1.5308632824 0006548838 -0.752238832 0555015831
0.3545243455 0108931106 05567244765 02450415955 -0.597466871

4 Frand aeee

ML e

S e e

Y e LT Y

e e

Figure 4: Rotated Factor Scores Output by SAS

Visualizing Rotation in BiPlots

Let’s start with a peek at BiPlots of the first 2 pairs of principal component loadings, prior to rotation.
Notice that here I'm not going to bother with any scaling of the factor loadings as I'm not interested in
forcing my output to look like SAS’s output. I'm also downsampling the observations because 20,000 is
far to many to plot.

> biplot(pca.out$x[sample(1:19719,1000),1:2],

+ pca.out$rotation[,1:2],
+ cex=c(0.2,1),
+ main = 'BiPlot of Projection onto PC1 and PC2')

BiPlot of Projection onto PC1 and PC2
-02 -01 00 0.1 0.2 0.3

o _| L ™
— o
N
o
Ln_
L
o
N
)
o
o
© o
“!
- O
|
|
|
N
- O
[
I I I I
-5 0 5 10
PC1
> biplot(pca.out$x[sample(1:19719,1000),3:4],
+ pca.out$rotation[,3:4],
+ cex=c(0.2,1),
+ main = 'BiPlot of Projection onto PC3 and PC4')

PC4

BiPlot of Projection onto PC3 and PC4

-03 -02 -01 0.0 0.1 0.2
I I I I I I

0.3
I

PC3

Let’s see what happens to these biplots after rotation:

> vmax

= varimax(pca.out$rotation)

> newscores = pca.out$xl*)vmax$rotmat
> biplot (newscores[sample(1:19719,1000),1:2],

+

+ o+ o+ o+

vmax$loadings[,1:2],

cex=c(0.2,1),

main = 'BiPlot of Projection onto Rotated Axes 1,2',
xlab = 'Rotated Axis 1',

ylab = 'Rotated Axis 2')

-0.2 -01 0.0 0.1 0.2 0.3

-0.3

BiPlot of Projection onto Rotated Axes 1,2

-03 -02 -01 0.0 0.1 0.2
I I I I I I

0.3
I

Rotated Axis 2
0
|

N
|
<
|
o | "
T | | | | |
-6 -4 -2 0 2 4
Rotated Axis 1
> biplot(newscores[sample(1:19719,1000),3:4],
+ vmax$loadings[,3:4],
+ cex=c(0.2,1),
+ main = 'BiPlot of Projection onto Rotated Axes 3,4',
+ xlab = 'Rotated Axis 3',
+ ylab = 'Rotated Axis 4')

-0.2 -0.1 0.0 0.1 0.2 0.3

-0.3

BiPlot of Projection onto Rotated Axes 3,4

-0.4 -0.2 0.0 0.2 0.4
l l l l l
]
T o
LO —
Q]
- o
]
R
x
o
<
o)
@
(Q\]
-9
0 _|
[
<
-7

-5 0 5

Rotated Axis 3

After the rotation, we can see the BiPlots tell a more distinct story. The extroversion questions line up

along rotated axes 1, neuroticism along rotated axes 2, and agreeableness and openness are reflected in
rotated axes 3 and 4 respectively.

