PRINCIPAL COMPONENTS ANALYSIS

Iris Data

Let’s find Principal Components using the iris dataset. This is a well known
dataset, often used to demonstrate the effect of clustering algorithms. It
contains measurements for 150 iris flowers on 4 features:

1. Sepal.Length
2. Sepal. Width
3. Petal.Length
4. Petal Width

The fifth variable in the dataset tells us what species the flower is. There
are 3 species:

5. Species

1. Setosa
2. Versicolor

3. Virginica
Let’s first take a look at the scatterplot matrix:

> pairs(~Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
+ data = iris, col = c("red", "green3", "blue") [iris$Species])
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It is apparent that some of our variables are correlated. We can confirm
this by computing the correlation matrix (cor function). We can also check
out the individual variances of the variables and the covariances between
variables by examining the covariance matrix (cov function). Remember -
when looking at covariances, we can really only interpret the sign of the
number and not the magnitude as we can with the correlations.

> cor(iris[1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.87175638  0.8179411

Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

> cov(iris[1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 0.6856935 -0.0424340 1.2743154  0.5162707

Sepal.Width -0.0424340 0.1899794  -0.3296564 -0.1216394
Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063

We have relatively strong positive correlation between Petal Length, Petal
Width and Sepal Length. It is also clear that Petal Length has more than
3 times the variance of the other 3 variables. How will this effect our
analysis?

The scatter plots and correlation matrix provide useful information, but
they don’t give us a true sense for how the data looks when all 4 attributes
are considered simultaneously.

We will compute the principal components, using both the covariance
matrix and the correlation matrix, and see what we can learn about the
data. Let’s start with the covariance matrix which is the default setting in
R.

Iris Data: PCA on the Covariance Matrix

Principal Components, Loadings, and Variance Explained
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covM = cov(iris[1:4])

eig=eigen(covM, symmetric=TRUE,only.values=FALSE)
c=colnames (iris[1:4])

eig$values

vV V V VvV

[1] 4.22824171 0.24267075 0.07820950 0.02383509

> rownames (eig$vectors)=c(colnames(iris[1:4]))
> eig$vectors

[,1] [,2] [,3] [,4]
Sepal.Length 0.36138659 -0.65658877 -0.58202985 0.3154872
Sepal.Width -0.08452251 -0.73016143 0.59791083 -0.3197231
Petal.Length 0.85667061 0.17337266 0.07623608 -0.4798390
Petal.Width  0.35828920 0.07548102 0.54583143 0.7536574

The eigenvalues tell us how much of the total variance in the data is
directed along each eigenvector. Thus, the amount of variance along v; is

A1 and the proportion of variance explained by the first principal component

is
M

MAAr+ A3+ Ay

> eig$values[1]/sum(eig$values)

[1] 0.9246187

Thus 92% of the variation in the Iris data is explained by the first compo-
nent alone. What if we consider the first and second principal component
directions? Using this two dimensional representation (approximation/pro-
jection) we can capture the following proportion of variance:

A+ A
MAA+ A3+ Ay

> sum(eig$values[1:2])/sum(eig$values)

[1] 0.9776852
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With two dimensions, we explain 97.8% of the variance in these 4 variables!
The entries in each eigenvector are called the loadings of the variables on
the component. The loadings give us an idea how important each variable
is to each component. For example, it seems that the third variable in our
dataset (Petal Length) is dominating the first principal component. This
should not come as too much of a shock - that variable had (by far) the
largest amount of variation of the four. In order to capture the most amount
of variance in a single dimension, we should certainly be considering this
variable strongly. The variable with the next largest variance, Sepal Length,
dominates the second principal component.

Note: Had Petal Length and Sepal Length been correlated, they would not
have dominated separate principal components, they would have shared one. These
two variables are not correlated and thus their variation cannot be captured along
the same direction.

The PCA Projection i.e. Observation Scores

Lets plot the projection of the four-dimensional iris data onto the two
dimensional space spanned by the first 2 principal components. To do this,
we need coordinates. These coordinates are commonly called scores in
statistical texts. We can find the coordinates of the data on the principal
components by solving the system

X = AVT

where X is our original iris data (centered to have mean = 0) and A is a
matrix of coordinates in the new principal component space, spanned by
the eigenvectors in V.

Solving this system is simple enough - since V is an orthogonal matrix.
Let’s confirm this:

> eig$vectors 7%*J, t(eig$vectors)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.000000e+00 4.163336e-17 -2.775558e-17 -2.775558e-17
Sepal.Width  4.163336e-17 1.000000e+00 1.665335e-16 1.942890e-16
Petal.Length -2.775558e-17 1.665335e-16 1.000000e+00 -2.220446e-16
Petal.Width -2.775558e-17 1.942890e-16 -2.220446e-16 1.000000e+00

> t(eig$vectors) %x*J, eig$vectors
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[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 -2.289835e-16 0.000000e+00 -1.110223e-16
[2,] -2.289835e-16 1.000000e+00 2.7755568e-17 -1.318390e-16
[3,] 0.000000e+00 2.775558e-17 1.000000e+00 1.110223e-16
[4,] -1.110223e-16 -1.318390e-16 1.110223e-16 1.000000e+00

We'll have to settle for precision at 15 decimal places. Close enough!
So to find the loadings, we simply subtract the means from our original
variables to create the data matrix X and compute

A =XV

> X = scale(iris[1:4], center = TRUE, scale = FALSE)

> scores = data.frame(X %xJ eig$vectors)

> colnames(scores) = c("Prinl", "Prin2", "Prin3", "Prin4")
> scores[1:10, ]

Prinl Prin2 Prin3 Prind
-2.684126 -0.31939725 -0.02791483 0.002262437
-2.714142 0.17700123 -0.21046427 0.099026550
-2.888991 0.14494943 0.01790026 0.019968390
-2.745343 0.31829898 0.03155937 -0.075575817

.728717 -0.32675451 0.09007924 -0.061258593
-2.280860 -0.74133045 0.16867766 -0.024200858
-2.820538 0.08946138 0.25789216 -0.048143106
-2.626145 -0.16338496 -0.02187932 -0.045297871
-2.886383 0.57831175 0.02075957 -0.026744736
.672756 0.11377425 -0.19763272 -0.056295401
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To this point, we have simply computed coordinates (scores) on a new
set of axis (principal components, eigenvectors, loadings). These axis are
orthogonal and are aligned with the directions of maximal variance in the
data. When we consider only a subset of principal components (like 2
components accounting for 97% of the variance), then we are projecting the
data onto a lower dimensional space. Generally, this is one of the primary
goals of PCA: Project the data down into a lower dimensional space (onto
the span of the principal components) while keeping the maximum amount of
information (i.e. variance).

Thus, we know that almost 98% of the data’s variance can be seen in
two-dimensions using the first two principal components. Let’s go ahead
and see what this looks like:
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> plot(scores$Prinl, scores$Prin2, main = "Data Projected on First 2 Principal Components",
+ xlab = "First Principal Component", ylab = "Second Principal Component",
+ col = c("red", "green3", "blue") [iris$Species])

Data Projected on First 2 Principal Components
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Principal Components in R
> irispca=princomp(iris[1:4])
> # Variance Explained
> summary(irispca)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 2.0494032 0.49097143 0.27872586 0.153870700

Proportion of Variance 0.9246187 0.05306648 0.01710261 0.005212184
Cumulative Proportion 0.9246187 0.97768521 0.99478782 1.000000000

> # Eigenvectors:
> irispca$loadings
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Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Sepal.Length 0.361 -0.657 -0.582 0.315

Sepal.Width -0.730 0.598 -0.320
Petal.Length 0.857 0.173 -0.480
Petal.Width  0.358 0.546 0.754

Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00

> # Coordinates of data along PCs:
> irispca$scores[1:10, ]

Comp. 1 Comp. 2 Comp.3 Comp.4
[1,] -2.684126 -0.31939725 -0.02791483 0.002262437
[2,] -2.714142 0.17700123 -0.21046427 0.099026550
[3,] -2.888991 0.14494943 0.01790026 0.019968390
[4,] -2.745343 0.31829898 0.03155937 -0.075575817
[6,] -2.728717 -0.32675451 0.09007924 -0.061258593
[6,] -2.280860 -0.74133045 0.16867766 -0.024200858
[7,] -2.820538 0.08946138 0.25789216 -0.048143106
[8,] -2.626145 -0.16338496 -0.02187932 -0.045297871
[9,] -2.886383 0.57831175 0.02075957 -0.026744736
[10,] -2.672756 0.11377425 -0.19763272 -0.056295401

> # You'll notice this is different from SAS output when the option cor=T is used on the princom
> # sqrt((n-1)/n) because when someone wrote this function they standardized data using populati
> # standard deviation.

All of the information we just computed is correct. One additional feature
that R users have created is the **biplot**. The PCA biplot allows us to see
where our original variables fall in the space of the principal components.
Highly correlated variables will fall along the same direction (or exactly
opposite directions) as a change in one of these variables correlates to a
change in the other. Uncorrelated variables will appear further apart.

> biplot(irispca, col = c("gray", "blue"))
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We can examine some of the outlying observations to see how they align
with these projected variable directions. It helps to compare them to the
quartiles of the data. Also keep in mind the direction of the arrows in
the plot. If the arrow points down then the positive direction is down -
indicating observations which are greater than the mean. Let’s pick out
observations 42 and 132 and see what the actual data points look like in
comparison to the rest of the sample population.

> summary(iris[1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.0567 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. 2.500
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> # Consider orientation of outlying observations:
> iris[42, 1]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
42 4.5 2.3 1.3 0.3 setosa

> iris[132, ]

Sepal.Length Sepal.Width Petal.Length Petal.Width  Species
132 7.9 3.8 6.4 2 virginica

Variable Clustering with PCA

The direction arrows on the biplot are merely the coefficients of the original
variables when combined to make principal components. Don’t forget
that principal components are simply linear combinations of the original
variables.

For example, here we have the first principal component (the first
column of V), v; as:

> eig$vectors[,1]

Sepal.Length Sepal.Width Petal.Length Petal.Width
0.36138659 -0.08452251  0.85667061  0.35828920

This means that
compy = 0.36Sepal.Length — 0.08Sepal . Width + 0.85Petal.Length + 0.35Petal . Width

the same equation could be written for each of the principal components,
compy, . ..,COMpy.

Essentially, we have a system of equations telling us that the rows of
VT (i.e. the columns of V) give us the weights of each variable for each
principal component:

compq Sepal.Length
compa | _ T Sepal Width
comps Petal .Length

compy Petal Width
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Thus, if want the coordinates of our original variables in terms of
Principal Components (so that we can plot them as we do in the biplot) we
need to look no further than the rows of the matrix V as

Sepal.Length compq
Sepal Width | compa
Petal.Length | | comps
Petal Width compy

means that the rows of V give us the coordinates of our original variables
in the PCA space.

> #First entry in each eigenvectors give coefficients for Variable 1:
> eig$vectors[1,]

[1] 0.3613866 -0.6565888 -0.5820299 0.3154872

Sepal.Length = 0.361comp; — 0.657comp, — 0.582comps + 0.315compy

You can see this on the biplot. The vector shown for Sepal.Length is (0.361,
-0.656), which is the two dimensional projection formed by throwing out
components 3 and 4.

Variables which lie upon similar directions in the PCA space tend to
change in a similar fashion. We’d consider Petal. Width and Petal. Length as
a cluster of variables. It does not appear that we need both in our model.

Comparison with PCA on the Correlation Matrix

We can complete the same analysis using the correlation matrix. I'll leave it
as an exercise to compute the Principal Component loadings and scores
and variance explained directly from eigenvectors and eigenvalues. You
should do this and compare your results to the R output. (Beware: you must
transform your data before solving for the scores. With the covariance version,
this meant centering - for the correlation version, this means standardization as
well)

> irispca2 = princomp(iris[1:4], cor = TRUE)
> summary(irispca2)
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Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.7083611 0.9560494 0.38308860 0.143926497
Proportion of Variance 0.7296245 0.2285076 0.03668922 0.005178709
Cumulative Proportion 0.7296245 0.9581321 0.99482129 1.000000000

> irispca2$loadings

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4
Sepal.Length 0.521 -0.377 0.720 0.261
Sepal.Width -0.269 -0.923 -0.244 -0.124
Petal.Length 0.580 -0.142 -0.801
Petal.Width  0.565 -0.634 0.524

Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00

> irispca2$scores([1:10, ]

Comp.1 Comp.2 Comp.3 Comp.4
[1,] -2.264703 -0.4800266 0.12770602 0.02416820
[2,] -2.080961 0.6741336 0.23460885 0.10300677
[3,] -2.364229 0.3419080 -0.04420148 0.02837705
[4,] -2.299384 0.5973945 -0.09129011 -0.06595556
[6,] -2.389842 -0.6468354 -0.01573820 -0.03592281
[6,] -2.075631 -1.4891775 -0.02696829 0.00660818
[7,] -2.444029 -0.0476442 -0.33547040 -0.03677556
[8,]1 -2.232847 -0.2231481 0.08869550 -0.02461210
[9,] -2.334640 1.1153277 -0.14507686 -0.02685922
[10,] -2.184328 0.4690136 0.25376557 -0.03989929

> plot(irispca2$scores[, 1], irispca2$scores[, 2], main = "Data Projected on First 2 Principal
+ xlab = "First Principal Component", ylab = "Second Principal Component",
+ col = c("red", "green3", "blue")[iris$Species])
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> biplot(irispca2)

First Principal Component
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Here you can see the direction vectors of the original variables are relatively
uniform in length in the PCA space. This is due to the standardization in the
correlation matrix. However, the general message is the same: Petal. Width
and Petal.Length Cluster together, and many of the same observations
appear "on the fray" on the PCA space - although not all of them!

Which Projection is Better?

What do you think? It depends on the task, for this data. The results in
terms of variable clustering are pretty much the same. For clustering/-
classifying the 3 species of flowers, we can see better separation in the
Covariance version.

Beware of biplots

Be careful not to draw improper conclusions from biplots. Particularly,
be careful about situations where the first two principal components do
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not summarize the majority of the variance. If a large amount of variance
is captured by the 3rd or 4th (or higher) principal components, then we
must keep in mind that the variable projections on the first two principal
components are flattened out versions of a higher dimensional picture. If a
variable vector appears short in the 2-dimensional projection, it means one
of two things:

e That variable has small variance

¢ That variable appears to have small variance when depicted in the
space of the first two principal components, but truly has a larger
variance which is represented by 3rd or higher principal components.

Let’s take a look at an example of this. We'll generate 500 rows of data
on 4 nearly independent normal random variables. Since these variables are
uncorrelated, we might expect that the 4 orthogonal principal components
will line up relatively close to the original variables. If this doesn’t happen,
then at the very least we can expect the biplot to show little to no correlation
between the variables. We’ll give variables 2 and 3 the largest variance.
Multiple runs of this code will generate different results with similar
implications.
means=c(2,4,1,3)
sigmas=c(7,9,10,8)
sample.size=500

data=mapply (function(mu,sig) {rnorm(mu,sig, n=sample.size)},mu=means,sig=sigmas)
cor(data)

V V. V Vv VvV

[,1] [,2] [,3] [,4]
[1,] 1.00000000 -0.06572818 -0.02442179 0.10800380
[2,] -0.06572818 1.00000000 0.04127398 0.02682223
[3,] -0.02442179 0.04127398 1.00000000 0.04358849
[4,] 0.10800380 0.02682223 0.04358849 1.00000000

> pc=princomp(data,scale=TRUE)
> summary (pc)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp. 4
Standard deviation 9.9687318 8.8742441 7.6430119 6.7925399
Proportion of Variance 0.3515455 0.2785893 0.2066478 0.1632173
Cumulative Proportion 0.3515455 0.6301349 0.8367827 1.0000000
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> pc$loadings

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4
[1,] -0.134 -0.612 0.779
[2,] -0.188 0.972 0.126
[3,] -0.979 -0.194
4,1 -0.787 -0.612

Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00

> biplot(pc)
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Obviously, the wrong conclusion to make from this biplot is that Variables

1 and 4 are correlated. Variables 1 and 4 do not load highly on the first two
principal components - in the whole 4-dimensional principal component
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space they are nearly orthogonal to each other and to variables 1 and
2. Thus, their orthogonal projections appear near the origin of this 2-
dimensional subspace.

The moral of the story: Always corroborate your results using the
variable loadings and the amount of variation explained by each variable.

PCA as an SVD

Let’s demonstrate the fact that PCA and SVD are equivalent by computing
the SVD of the centered iris data:

X=scale(iris[,1:4],center=TRUE,scale=FALSE)
irisSVD=svd (X)

u=irisSVD$u

d=diag(irisSVD$d)

SVDpcs=irisSVD$v

SVDscores=u%*%d
irisPCA=princomp(iris[,1:4])
irisPCA$scores[1:8,]

V V. V V V V Vv VvV

Comp.1 Comp.2 Comp.3 Comp.4
[1,] -2.684126 -0.31939725 -0.02791483 0.002262437
[2,] -2.714142 0.17700123 -0.21046427 0.099026550
[3,] -2.888991 0.14494943 0.01790026 0.019968390
[4,] -2.745343 0.31829898 0.03155937 -0.075575817
[6,]1 -2.728717 -0.32675451 0.09007924 -0.061258593
[6,] -2.280860 -0.74133045 0.16867766 -0.024200858
[7,] -2.820538 0.08946138 0.25789216 -0.048143106
[8,] -2.626145 -0.16338496 -0.02187932 -0.045297871

> SVDscores[1:8,]

[,1] [,2] [,3] [,4]
[1,] -2.684126 -0.31939725 0.02791483 0.002262437
[2,] -2.714142 0.17700123 0.21046427 0.099026550
[3,] -2.888991 0.14494943 -0.01790026 0.019968390
[4,] -2.745343 0.31829898 -0.03155937 -0.075575817
[6,]1 -2.728717 -0.32675451 -0.09007924 -0.061258593
[6,] -2.280860 -0.74133045 -0.16867766 -0.024200858
[7,] -2.820538 0.08946138 -0.25789216 -0.048143106
[8,] -2.626145 -0.16338496 0.02187932 -0.045297871




> irisPCA$loadings
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Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Sepal.Length 0.361 -0.657 -0.582 0.315

Sepal.Width -0.730 0.598 -0.320
Petal.Length 0.857 0.173 -0.480
Petal.Width  0.358 0.546 0.754

Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00

> SVDpcs

[,1] [,2] [,3] [,4]
[1,] 0.36138659 -0.65658877 0.58202985 0.3154872
[2,] -0.08452251 -0.73016143 -0.59791083 -0.3197231
[3,] 0.85667061 0.17337266 -0.07623608 -0.4798390
[4,] 0.35828920 0.07548102 -0.54583143 0.7536574




