Dimension Reduction Why and How • As the dimensionality (i.e. number of variables) of a space grows, data points become so spread out that the ideas of distance and density become murky. • This is simply due to the incredible spacial increase that comes from adding an additional dimension. (with infinite potential energy) This is your life in 0-space. You sit at the origin. (with infinite potential energy) SUDDENLY, you are given a dimension (with infinite potential energy) Compared to your previous existence, your world seems infinitely more expansive! (with infinite potential energy) Level up: Here comes another dimension (i.e. basis vector!) (with infinite potential energy) Now imagine a *third* dimension. The amount of additional space added in each dimension actually seems to get larger. • Now generate those 500 points in \mathbb{R}^3 , \mathbb{R}^4 , ..., \mathbb{R}^{500} • Compute that same metric, the ratio of the maximum distance to the minimum distance • Observe behavior as the number of dimensions grows... • Imagine a sphere that sits perfectly (inscribed) inside of a cube. • In 3-dimensions, it looks like this: • Assume a *unit* cube and unit diameter sphere Volume of Sphere: $(4/3)\pi(0.5)^3 \approx 0.52$ Volume of Cube: 1 So the sphere takes up over half of the space. In d-space, the volume of hypersphere: $$\frac{2r^d\pi^{\frac{d}{2}}}{d\Gamma(\frac{d}{2})}$$ Volume of hypercube: $$l^{d} = 1$$ $$\lim_{d \to \infty} \frac{\text{SphereVolume}}{\text{CubeVolume}} = 0$$ It's as if \boldsymbol{ALL} of the volume of the hypercube is contained in the corners as the dimension of the space grows large! (comparatively no volume in the sphere) - No distance/similarity metric is immune to the vastness of high dimensional space. - One more. Let's look at the distribution (or lack thereof) of cosine similarity. - Compute the cosine similarity between each pair of points, observe the distribution as the space grows. #### The Curse: Cosine Similarity #### When is this a problem? - Primarily when using algorithms which rely on distance or similarity - Clustering - Nearest-neighbor methods - On any model due to collinearity and a desire for model simplicity and computational efficiency. - Predictive models usually suffer from high variance (overfitting) in high dimensional data - Computational load can be *greatly* reduced in many scenarios ### What can we do about it? Dimension Reduction #### Dimension Reduction Overview #### FEATURE SELECTION Choose subset of existing features By their relationship to a target (supervised) By their distribution/correlation with others (unsupervised) #### FEATURE EXTRACTION Create new features Often linear combinations of existing features (PCA, SVD, NMF) Often chosen to be uncorrelated #### Feature Selection - Removing features manually - Redundant (multicollinearity/VIFs) - Irrelevant (Text mining stop words) - Poor quality features (>50% missing values) - Forward/Backward/Stepwise Regression - Decision Tree - Variable Importance Table - Can change a little depending on metric - Gini/Entropy/Mutual Information/Chi-Square #### Feature Extraction: Continuous Variables #### • PCA - Create a new set of features as linear combinations of your originals - These new features are ranked by variance (importance/information) - Use the first several PCs in place of original features #### • SVD - Same as PCA, except the 'variance' interpretation is no longer valid - Common for text-mining, since X^TX is related to cosine similarity. #### • Factor Analysis - The principal components are rotated so that our new features are more interpretable. - Occasionally other factor analysis algorithms like maximum likelihood are considered. #### Feature Extraction: Continuous Variables • Discretization/Binning • While this doesn't reduce the dimensions of your data (it increases them!), it is still a form of feature extraction! #### Feature Extraction: Nominal Variables Encoding variables with numeric values. | Checking Account Balance | | |---|-----------| | Original Level | New Value | | Negative | -100 | | No checking account | 0 | | Balance is zero | 0 | | 0 <balance<200< td=""><td>100</td></balance<200<> | 100 | | 200 <balance<800< td=""><td>500</td></balance<800<> | 500 | | Balance>800 | 900 | | Balance>800 and IncomeDD | 1000 | #### Feature Extraction: Nominal Variables - Target encoding/Optimal Scaling with numeric values. - In supervised learning, can let the numeric value of level=L be the average target value of all observations that have level = L #### • Correspondence analysis - Method similar to PCA for categorical data. - Uses chi-squared table (contingency table) and chi-squared distance. - Provides coordinates of categorical variables in a lowerdimensional space. - More often used as exploratory method, potentially for binning purposes.