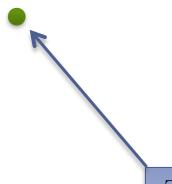
Dimension Reduction

Why and How

• As the dimensionality (i.e. number of variables) of a space grows, data points become so spread out that the ideas of distance and density become murky.

• This is simply due to the incredible spacial increase that comes from adding an additional dimension.

(with infinite potential energy)



This is your life in 0-space. You sit at the origin.

(with infinite potential energy)

SUDDENLY,

you are given a dimension

(with infinite potential energy)

Compared to your previous existence, your world seems infinitely more expansive!

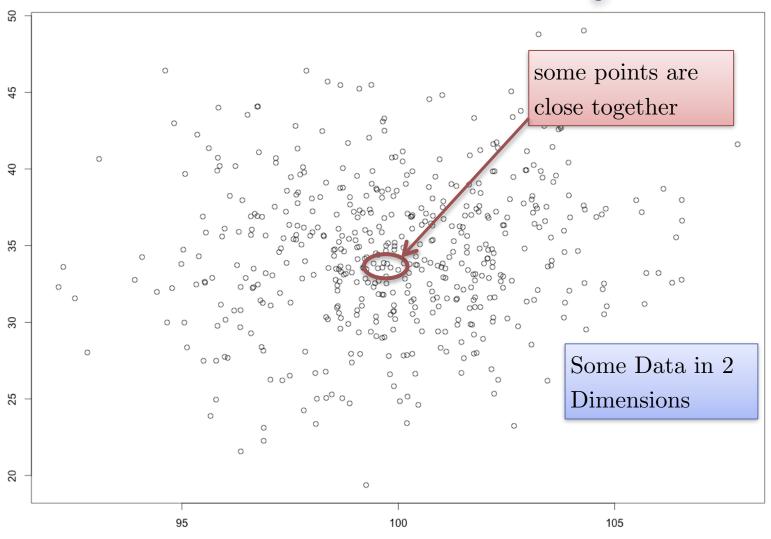
(with infinite potential energy)

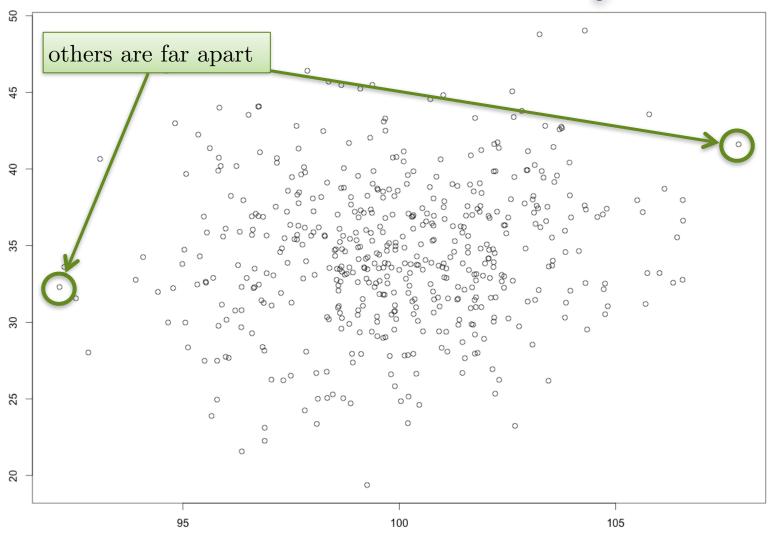
Level up: Here comes another dimension (i.e. basis vector!)

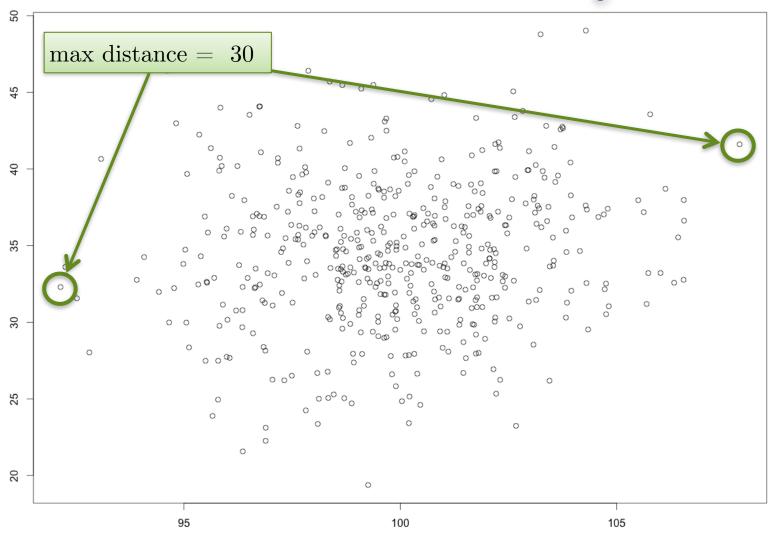
(with infinite potential energy)

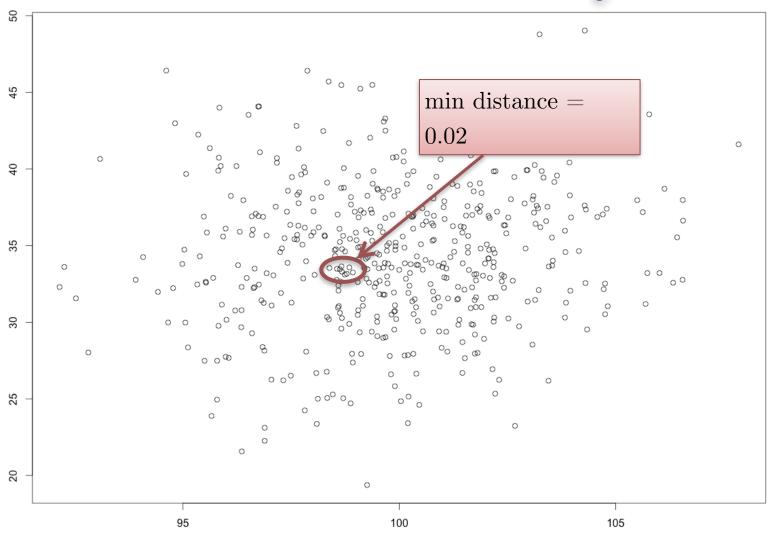
Now imagine a *third* dimension.

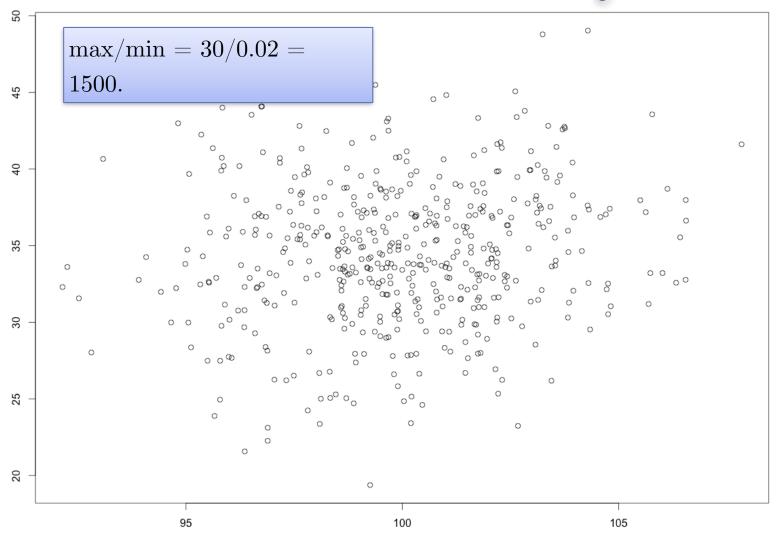
The amount of additional space added in each dimension actually seems to get larger.

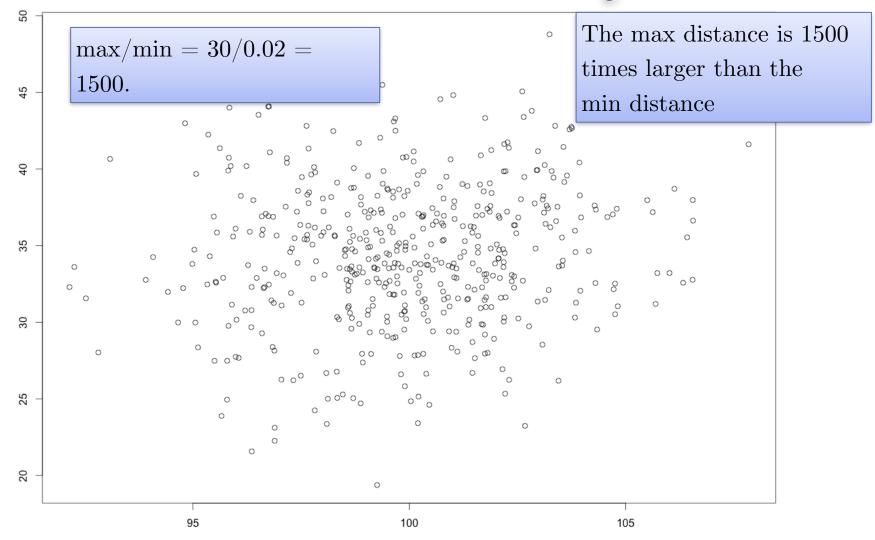








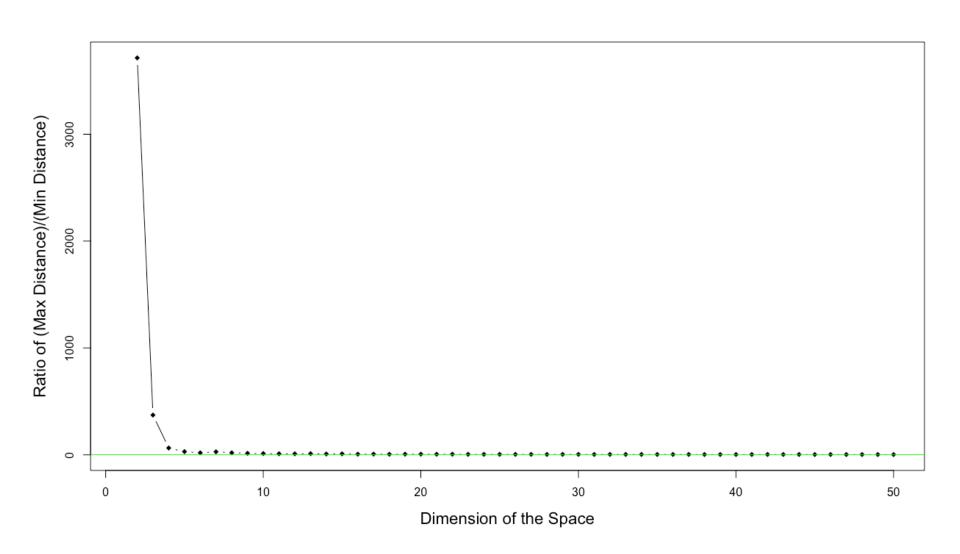


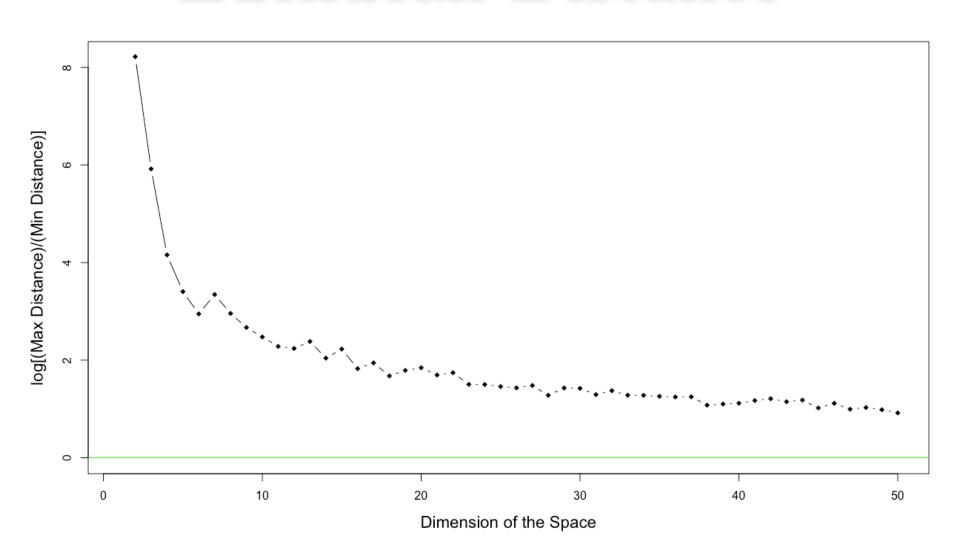


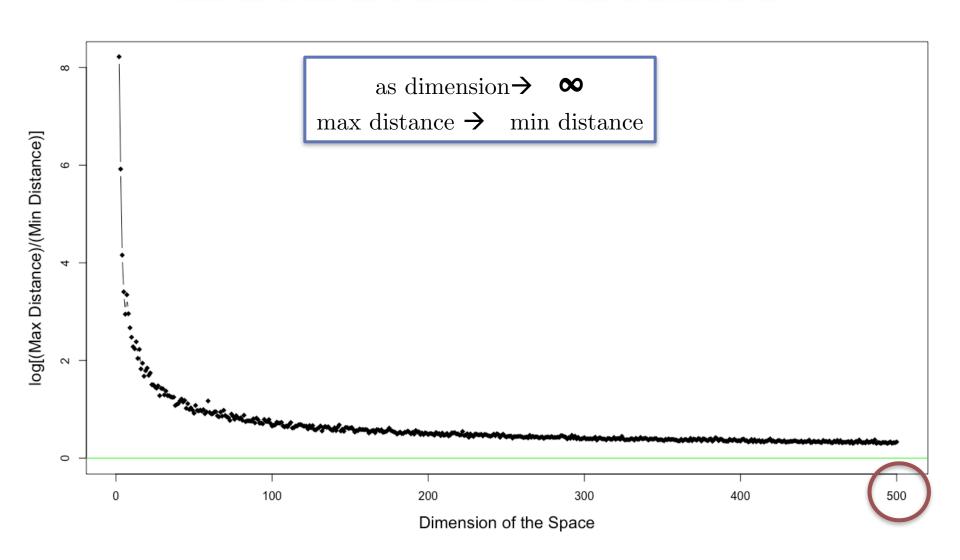
• Now generate those 500 points in \mathbb{R}^3 , \mathbb{R}^4 , ..., \mathbb{R}^{500}

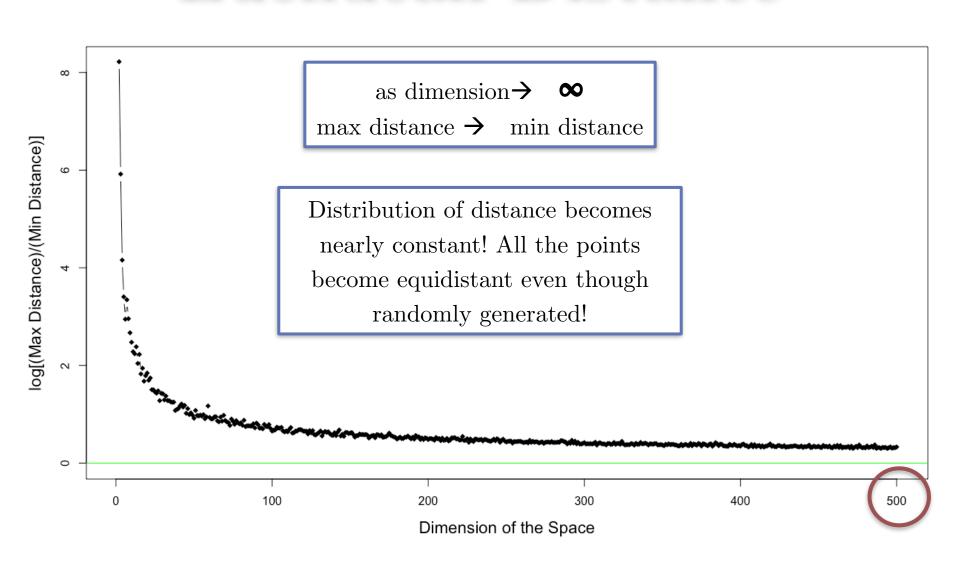
• Compute that same metric, the ratio of the maximum distance to the minimum distance

• Observe behavior as the number of dimensions grows...





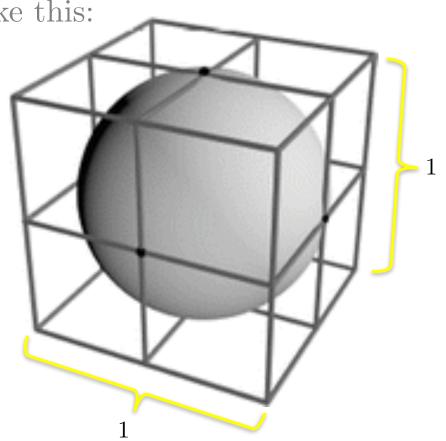


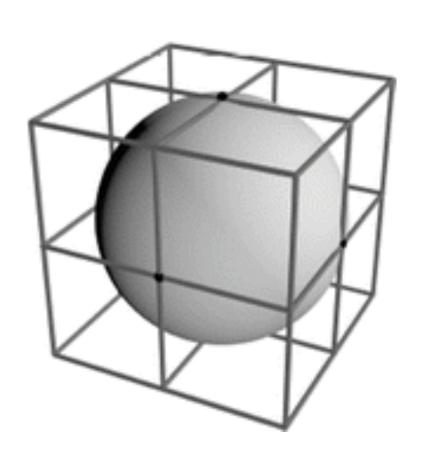


• Imagine a sphere that sits perfectly (inscribed) inside of a cube.

• In 3-dimensions, it looks like this:

• Assume a *unit* cube and unit diameter sphere





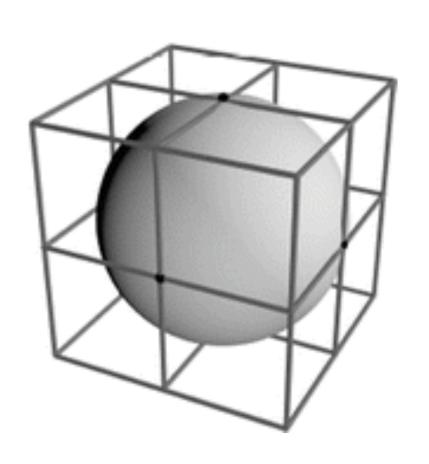
Volume of Sphere:

 $(4/3)\pi(0.5)^3 \approx 0.52$

Volume of Cube:

1

So the sphere takes up over half of the space.

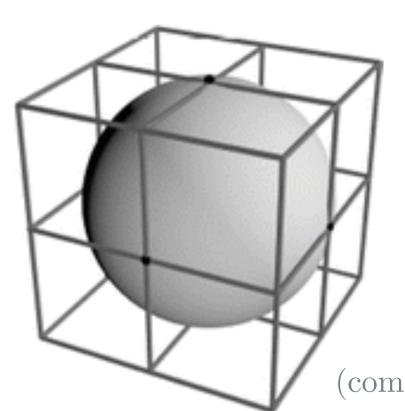


In d-space, the volume of hypersphere:

$$\frac{2r^d\pi^{\frac{d}{2}}}{d\Gamma(\frac{d}{2})}$$

Volume of hypercube:

$$l^{d} = 1$$



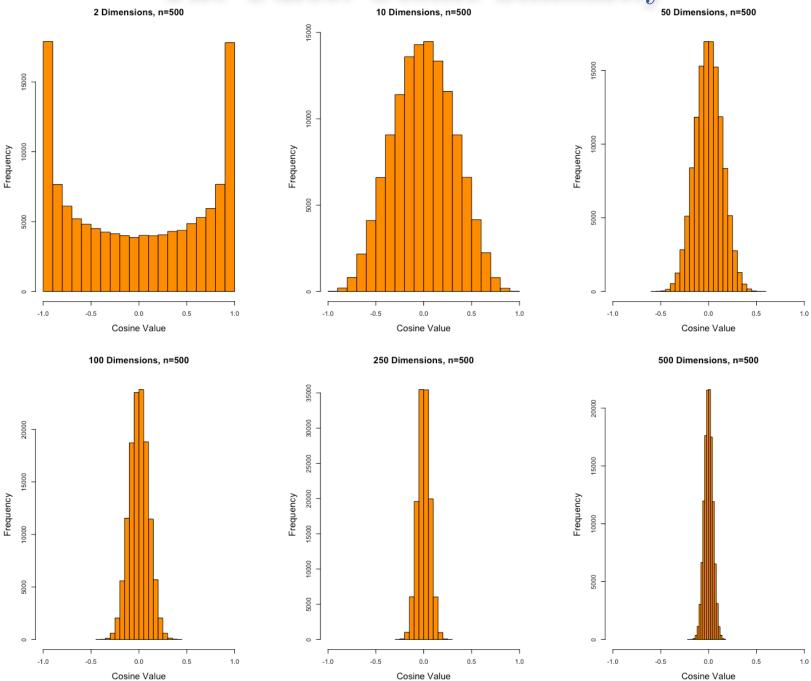
$$\lim_{d \to \infty} \frac{\text{SphereVolume}}{\text{CubeVolume}} = 0$$

It's as if \boldsymbol{ALL} of the volume of the hypercube is contained in the corners as the dimension of the space grows large!

(comparatively no volume in the sphere)

- No distance/similarity metric is immune to the vastness of high dimensional space.
- One more. Let's look at the distribution (or lack thereof) of cosine similarity.
- Compute the cosine similarity between each pair of points, observe the distribution as the space grows.

The Curse: Cosine Similarity



When is this a problem?

- Primarily when using algorithms which rely on distance or similarity
 - Clustering
 - Nearest-neighbor methods
- On any model due to collinearity and a desire for model simplicity and computational efficiency.
 - Predictive models usually suffer from high variance (overfitting) in high dimensional data
 - Computational load can be *greatly* reduced in many scenarios

What can we do about it?

Dimension Reduction

Dimension Reduction Overview

FEATURE SELECTION

Choose subset of existing features

By their relationship to a target (supervised)

By their distribution/correlation with others (unsupervised)

FEATURE EXTRACTION

Create new features

Often linear combinations of existing features (PCA, SVD, NMF)

Often chosen to be uncorrelated

Feature Selection

- Removing features manually
 - Redundant (multicollinearity/VIFs)
 - Irrelevant (Text mining stop words)
 - Poor quality features (>50% missing values)
- Forward/Backward/Stepwise Regression
- Decision Tree
 - Variable Importance Table
 - Can change a little depending on metric
 - Gini/Entropy/Mutual Information/Chi-Square

Feature Extraction: Continuous Variables

• PCA

- Create a new set of features as linear combinations of your originals
- These new features are ranked by variance (importance/information)
- Use the first several PCs in place of original features

• SVD

- Same as PCA, except the 'variance' interpretation is no longer valid
- Common for text-mining, since X^TX is related to cosine similarity.

• Factor Analysis

- The principal components are rotated so that our new features are more interpretable.
- Occasionally other factor analysis algorithms like maximum likelihood are considered.

Feature Extraction: Continuous Variables

• Discretization/Binning

• While this doesn't reduce the dimensions of your data (it increases them!), it is still a form of feature extraction!

Feature Extraction: Nominal Variables

Encoding variables with numeric values.

Checking Account Balance	
Original Level	New Value
Negative	-100
No checking account	0
Balance is zero	0
0 <balance<200< td=""><td>100</td></balance<200<>	100
200 <balance<800< td=""><td>500</td></balance<800<>	500
Balance>800	900
Balance>800 and IncomeDD	1000

Feature Extraction: Nominal Variables

- Target encoding/Optimal Scaling with numeric values.
 - In supervised learning, can let the numeric value of level=L be the average target value of all observations that have level = L

• Correspondence analysis

- Method similar to PCA for categorical data.
- Uses chi-squared table (contingency table) and chi-squared distance.
- Provides coordinates of categorical variables in a lowerdimensional space.
- More often used as exploratory method, potentially for binning purposes.