
Eigenvalues, Eigenvectors, 
and an Intro to PCA

Changing Basis

‣ Talked about re-writing our data using a new set of 
variables, or a new basis 

‣ How do we choose this new basis?



PCA
One (very popular) method: start by choosing the 

basis vectors as directions in which the variance of the 
data is maximal.

x1

x2

PCA
Then, choose subsequent directions that are 

orthogonal to the first and have next largest variance.
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PCA
The variance in a given direction refers to the variance 

of the data once projected onto that direction. 
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Directional Variance
The variance in a given direction refers to the variance 

of the data once projected onto that direction. 
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Directional Variance
The variance in a given direction refers to the variance 

of the data once projected onto that direction. 
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Directional Variance
The variance in a given direction refers to the variance 

of the data once projected onto that direction. 

Directional Variance
Eigenvectors of the covariance matrix provide these 

directions of maximal variance.

They are the major/minor axes of the ellipsoid  
associated with the elliptical distribution



Eigenvectors

Effect of Matrix Multiplication

=

When the matrix A is square, then x and b  
have the same size. We can draw (or imagine) them  

in the same space.

A x b



Linear Transformation

In general, multiplying a vector by a matrix 
changes both its direction and magnitude.
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Eigenvectors

However, a matrix may act on certain vectors by changing 
only their magnitude, not their spanning direction.
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The matrix A acts 
like a scalar on this  
particular vector!
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Eigenvalues and Eigenvectors

‣ For a square matrix A, a nonzero vector x is called 
an eigenvector of A if multiplying by A results in 
a scalar multiple of x. 

‣ The scalar λ is called the eigenvalue associated 
with the eigenvector.

Ax= λx

Previous Example
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Example 2
Show that x is an eigenvector of A and find the 

corresponding eigenvalue.
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Practice
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Show that v is an eigenvector of A and 
find the corresponding eigenvalue. 
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Can a rectangular matrix have 
eigenvalues/eigenvectors?



Eigenvector/Eigenvalue Facts

1. Only square matrices have eigenvectors. 

2. Eigenvectors and eigenvalues come in pairs.  

3. An nxn matrix has n eigenpairs, although some 
eigenvalues may be zero if the matrix is not full rank. 

4. All square matrices have eigenvectors, but most of 
them will contain complex numbers (i =     ) 

5. The eigenvalues of a matrix are commonly called the 
spectrum of the matrix.
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Eigenvector/Eigenvalue Facts

5. Any scalar multiple of an eigenvector of A is also an  
eigenvector of A with the same eigenvalue.
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In general (#proof): Let Ax = λx. If c is some constant, then: 
A(cx)=c(Ax)=c(λx)=λ(cx)

cx is also an eigenvector



Eigenspaces
‣ For a given matrix, there are infinitely many eigenvectors 

associated with one eigenvalue. 

‣ Any scalar multiple (positive or negative) can be used. 

‣ The collection is called the eigenspace associated with the 
eigenvalue. 

‣ In previous example, the eigenspace associated with  

λ=2 is 

‣ With this in mind, what should you expect from software?? 
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Zero Eigenvalues
What if λ=0 is an eigenvalue for some matrix A? 

Ax = 0x = 0, where x ≠ 0 is an eigenvector

This means some linear combination of the columns 
of A is equal to zero!

⟹ Columns of A are linearly dependent 
⟹ A is not full rank       
⟹ Perfect Multicollinearity



Eigenvalue Ordering
The eigenpairs (λi,vi) of a matrix are ordered by the  

magnitude of the eigenvalue.

The “first” eigenvector v1 is the eigenvector 
associated with the largest eigenvalue (in absolute value)

Practice

1 2For the following matrix, determine the 
eigenvalue associated with the given 
eigenvector. 
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What can you conclude 
about the matrix A 

from this?

3The matrix M has eigenvectors u and v as shown. 
What is λ1, the first eigenvalue of M? 
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Symmetric Matrices
‣ Symmetric matrices (like the covariance, correlation, 

distance and similarity matrices) have several nice 
properties: 

1. Their eigenvalues/eigenvectors are real  
(as opposed to complex (i =     )) 

2. Their eigenvectors are all mutually orthogonal. 

3. Thus if you normalize the eigenvectors to unit 
length they will form an orthogonal matrix.
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Eigenvectors of Symmetric Matrices

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5



Introduction to Principal 
Components Analysis 

(PCA)

Eigenvectors of the  
Covariance/Correlation Matrices

‣ Covariance/Correlation Matrices are symmetric 

‣ Their eigenvectors are orthogonal 

‣ Eigenvectors are ordered by the magnitude of their 
eigenvalues 

‣ Eigenvectors are assumed to be unit vectors, 
expressing only a direction.



Covariance vs. Correlation

More detail later, but 

➡ For the covariance matrix, we want to think of 
our data as centered to begin with (directions 
drawn from the origin=mean). 

➡ For the correlation matrix, we want to think of 
our data as standardized to begin with (i.e. 
centered and divided by standard deviation)

Direction of Maximal 
Variance

The first eigenvector of a covariance/correlation matrix 
points in the direction of maximum variance in the data. 
This eigenvector is the first principal component.  
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“Best” Approximation
The first principal component minimizes the orthogonal 

distances between the spanning line and the points.
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It is the best 1-dimensional approximation of the 
2-dimensional data. 

v1

Not a regression line!
While it may look close in many two dimensional 

situations, there is no target variable in PCA.

Orthogonal Distances vs. Vertical Distances!
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Principal 
Component

Regression
Line



Secondary Directions
The second eigenvector of a covariance matrix points in 

the direction, orthogonal to the first, of maximal variance
x2
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v1v2

A New Basis
Principal components provide us with a new orthogonal 

basis where the coordinates of the data points are 
uncorrelated.
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Variable loadings
‣ Each principal component is a linear combination of 

the original variables: 

‣ These coefficients are called loadings
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BiPlot
Likewise, we can think of our original basis as linear  
combinations of the principal components, having 

coordinates in the new basis!
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BiPlot
‣ Uncorrelated data and variable vectors plotted on same 

new axes! 
‣ Points in top right have largest x2 values 
‣ Points in top left have smallest x1 values
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Scores/Coordinates
‣ The variable loadings give us a formula to compute the 

coordinates of our data in the new basis. 

‣ Note that we have to use either the centered data 
(covariance PCA) or the standardized data (correlation 
PCA) when using these formulas.
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Computing these for 
each observation gives 
the new coordinates 

along the axes v1 and v2



Practice
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For the following data plot, take your best guess and draw 
the direction vector for the first and second principal 
components.

Is there more than one correct answer to this question?

Practice
Suppose your data contained the 3 variables 
VO2.max, mile pace, and weight in that order. The 
first principal component for this data is the 
eigenvector of the covariance matrix: 

What would be the sign of the PC1 coordinate of 
an individual with below average VO2.max, below 
average mile pace, and above average weight?
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Major Ideas from Section

‣ Eigenvector 
‣ Eigenvalue 
‣ Eigenvalue Ordering 
‣ Principal Components 
‣ Directional Variance 
‣ Biplot 
‣ Zero Eigenvalues 
‣ Eigenvectors of symmetric matrices


