Linear Algebra Bootcamp

The 90 Minute Primer

Linear Algebra

• Study of functions/surfaces/spaces that do not bend or curve.

• Scalar multiplication and addition.

Matrices and Vectors

- Arrays or lists of numbers.
- Indexed first by row (i) then by column (j) \mathbf{X}_{ij} \mathbf{v}_i

$$\mathbf{X} = \begin{pmatrix} 1 & 8 & 7 & -1 \\ 4 & 9 & 6 & 9 \\ -3 & -4 & 9 & 8 \\ -2 & -1 & 10 & 3 \\ 3 & -3 & 1 & 7 \end{pmatrix} \quad \mathbf{V} = \begin{pmatrix} 0.3 \\ -1 \\ 1.2 \\ -1 \end{pmatrix}$$

Vectors/Points

(Geometrically)

Vectors have both direction and magnitude

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Direction arrow points from origin to the coordinate *point*

Magnitude is the length of that arrow #pythagoras

Matrix Arithmetic

(multi-dimensional math)

Addition

Element-wise

Scalar Multiplication

Element-wise

Scalar Multiplication (Geometrically)

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Scalar Multiplication (Geometrically)

Vector Addition

Vector Addition

(Geometrically)

addition is still commutative

Linear Combinations

A linear combination of vectors is a just weighted sum:

Linear Combinations

Linear Combinations

Multiplication

Inner Product

(row x column)

Inner Product

(row x column)

Inner Product

(row x column)

Matrix-Matrix Multiplication

Just a collection of matrix-vector products (linear combinations) with different coefficients.

$$(\mathbf{AB})_{ij} = \mathbf{A}_{i\star} \mathbf{B}_{\star j}$$

- MATRIX MULTIPLICATION IS NOT
 COMMUTATIVE! AB ≠ BA
- Just a collection of matrix-vector products
 (linear combinations) with different coefficients.
- Each linear combination involves the same set of vectors (the green columns) with different coefficients (the purple columns).
- ▶ This has important implications!

More Matrix Operations and Special Matrices

Transpose Operator

The transpose of a matrix \mathbf{A} , written \mathbf{A}^{T} is the matrix whose rows are the columns of \mathbf{A}

Transpose Operator

The transpose of a matrix \mathbf{A} , written \mathbf{A}^{T} is the matrix whose rows are the columns of \mathbf{A}

The transpose is useful for forming meaningful matrix products, typically of the form $\mathbf{A}^{T}\mathbf{A}$.

The Identity Matrix

The **identity matrix**, denoted **I** is to matrix algebra what the number 1 is to scalar algebra. The multiplicative identity.

When multiplied by the identity, a matrix remains unchanged.

$$AI = A$$

$$IA = A$$

The Identity Matrix

The identity matrix is a matrix of zeros with 1's on the main diagonal.

$$I_1 = [1], I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \dots, I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

The Inverse Matrix

The **inverse** of a matrix **A**, should it exist, is denoted **A**⁻¹, is a matrix for which multiplication by **A** results in the identity matrix.

$$\mathbf{A}\mathbf{A}^{\text{-1}} = \mathbf{I}$$

$$\mathbf{A}^{\text{-}1}\mathbf{A} = \mathbf{I}$$

The Inverse Matrix

All operations involving "cancelling" terms must be done with an inverse matrix.

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Systems of Equations

Systems of Equations

$$\begin{cases} 2x_{2} + 3x_{3} = 8 \\ 2x_{1} + 3x_{2} + 1x_{3} = 5 \\ x_{1} - x_{2} - 2x_{3} = -5 \end{cases}$$

$$\begin{pmatrix} 0 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \\ -5 \end{pmatrix}$$

Systems of Equations (Three types)

- In some applications, systems of equations have an **exact solution** but this is rare.
- ▶ The system of equations may be a set of constraints $(\leq, =, \geq)$. Infinitely many solutions within the constraints and must optimize some other quantity.
- In most applications, there is **no exact solution**. We introduce an error term and try to minimize it.

Systems of Equations (Least Squares)

$\underline{\mathrm{Obs}}$	$\underline{\text{Weight}}$	$\underline{ ext{Width}}$	$\underline{\mathrm{Length}}$	$\underline{\text{Time}}$
1	3	5.4	6.3	10.11
2	1.1	1.2	2.1	4.25
3	2.4	3.4	5	8.09
4	1.9	2.8	8.1	7.20
5	3.2	6.1	4.5	9.90
6	2.7	3.7	4.6	7.75

 $\mathbf{Time} = \beta_0 + \beta_1 \text{Weight} + \beta_2 \text{Width} + \beta_3 \text{Length}$

Systems of Equations

(Least Squares)

$\underline{\mathrm{Obs}}$	$\underline{ ext{Weight}}$	$\underline{ ext{Width}}$	$\underline{\mathrm{Length}}$	$\underline{\text{Time}}$
1	3	5.4	6.3	10.11
2	1.1	1.2	2.1	4.25
3	2.4	3.4	5	8.09
4	1.9	2.8	8.1	7.20
5	3.2	6.1	4.5	9.90
6	2.7	3.7	4.6	7.75

$$Time = \beta_0 + \beta_1 Weight + \beta_2 Width + \beta_3 Length$$

$$\mathbf{10.11} = 1\beta_0 + \mathbf{3}\beta_1 + \mathbf{5.4}\beta_2 + \mathbf{6.3}\beta_3$$

$$8.09 = 1\beta_0 + 2.4\beta_1 + 3.4\beta_2 + 5\beta_3$$

Systems of Equations (Least Squares)

 $\beta_{0} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \beta_{1} \begin{pmatrix} 3 \\ 1.1 \\ 2.4 \\ 1.9 \\ 3.2 \end{pmatrix} + \beta_{2} \begin{pmatrix} 5.4 \\ 1.2 \\ 3.4 \\ 2.8 \\ 6.1 \end{pmatrix} + \beta_{3} \begin{pmatrix} 6.3 \\ 2.1 \\ 5 \\ 8.1 \\ 4.5 \end{pmatrix} \approx \begin{pmatrix} 10.11 \\ 4.25 \\ 8.09 \\ 7.20 \\ 9.90 \\ 7.75$

$$\mathbf{Time} \neq \hat{\beta}_0 + \hat{\beta}_1 \text{Weight} + \hat{\beta}_2 \text{Width} + \hat{\beta}_3 \text{Length} + \boldsymbol{\mathcal{E}}$$

Systems of Equations (Least Squares)

Time =
$$\hat{\beta}_0 + \hat{\beta}_1 \text{Weight} + \hat{\beta}_2 \text{Width} + \hat{\beta}_3 \text{Length} + \varepsilon$$

$$\mathbf{v} = \mathbf{X}\hat{\boldsymbol{\beta}} + \varepsilon$$

Bootcamp 4: Systems of Equations and Least Squares

Systems of Equations

(Least Squares)

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}$$
 (has no solutions. "inconsistent")

Want to find β that gets the modeled values ($\hat{\mathbf{y}} = \mathbf{X}\beta$) on the right as close as possible to the true values (\mathbf{y}) on the left.

Minimize squared error

$$\sum_{\mathrm{i}} arepsilon_{\mathrm{i}}^2 arepsilon_{\mathrm{i}}^2 \ arepsilon = \mathrm{y} - \mathrm{X} eta$$

Systems of Equations

(Least Squares)

Minimize squared error

$$\min_{\beta} \sum_{i} \varepsilon_{i}^{2}$$

$$arepsilon=\mathrm{y}$$
 - $\mathrm{X}eta$

or equivalently

$$\min_{\beta} (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

or equivalently

$$\min_{\beta} ||(\mathbf{y} - \mathbf{X}\beta)||_2^2$$

Systems of Equations (Least Squares)

HOW to find the least squares solution?

The Normal Equations

$$\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^T\mathbf{y}$$

As long as X is full rank (no perfect multicollinearity), $\mathbf{X}^{\mathbf{T}}\mathbf{X}$ has an inverse and this system has an exact solution.

That solution **IS** the least squares solution.

$$\hat{\pmb{eta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{\text{-}1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

We're DONE talking about regression in Linear Algebra class.

From now on, our focus is on *unsupervised* problems that do not have a target variable.

Norms, Distances, and Similarity

Norms

- Norms are functions that measure the magnitude or length of a vector.
- Written ||x||
- ▶ 2-Norm (Euclidean norm) is the most common.

$$\|\mathbf{x}\|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}} = \sqrt{\mathbf{x}^{T}\mathbf{x}}$$

Norms

The distance between two points, **x** and **y**, is the norm of their difference.

$$\|\mathbf{x} - \mathbf{y}\|$$

- We can use this information to determine which points are more similar to each other.
- May create a **distance matrix**, **D**, which contains pairwise distances between points (observations).

$$\mathbf{D}_{ij} = \parallel obs_i - obs_j \parallel$$

Distance Matrix

Distance Matrix

Distance matrices are symmetric

Distance Matrix

Distance can help us find groups of similar objects (clusters)

Other Norms

▶ 1-Norm (Manhattan/CityBlock/Taxicab distance)

$$\|\mathbf{x}\|_{1} = |x_{1}| + |x_{2}| + \ldots + |x_{n}|$$

▶ ∞-Norm (Max Distance)

$$\|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\}$$

Norms in Statistics

Standard deviation:

$$\frac{1}{\sqrt{n-1}} \|\mathbf{x}\| \leftarrow \text{vector of } \\ \text{centered data}$$

Correlation Coefficient:

$$\frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \sim \text{vectors of centered data}$$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Covariance and Correlation

The Multivariate Normal Distribution

Normal (Gaussian) Density Function

Normal (Gaussian) Data Points

Normal (Gaussian) Data Points

 $x \sim N(0.1)$

Bootcamp 6: Covariance

Covariance

- Covariance is a number that describes how two variables change together.
- If x increases/decreases, does y tend to increase/decrease? Covariance can be negative.
- ▶ Is a parameter of the **joint distribution** of x and y
 - joint distribution: how likely are we to see the pair (x,y) together?

Joint Distribution of (x,y)

Suppose x and y are normally distributed

The vector (x,y) is multivariate normally distributed

The vector (x,y) is multivariate normally distributed

$$\begin{pmatrix} x \\ y \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 3/5 \\ 3/5 & 2 \end{pmatrix} \right)$$

Covariance Matrix Fun Facts

- Variances of each variable on the main diagonal
- Covariances of each pair of variables on the off diagonal
- Always symmetric

Q: How can we characterize a point as *rare*?

Var(X)=Var(y) and Covariance=0

Var(X)=Var(y) and Covariance = 4

Var(X)=Var(y) and Covariance = -8

Bootcamp 6: Covariance X

Var(X)=3*Var(y) and Covariance=0

Bootcamp 6: Covariance

Covariance

Covariance is calculated from the data:

vectors of centered data

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} \mathbf{x}^T \mathbf{y}$$

When covariance is positive:

x larger than mean, y tends to be larger than the mean x smaller than the mean, y tends to be smaller than the mean

When covariance is negative:

x larger than mean, y tends to be smaller than the mean x smaller than the mean, y tends to be larger than the mean

The units will have a strong effect on this number so we cannot interpret magnitude, only sign!!

Correlation

Correlation is the covariance of the standardized data:

$$Corr(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \overline{x})}{s_x} \frac{(y_i - \overline{y})}{s_y} = \frac{1}{n-1} \mathbf{X}^T \mathbf{y}$$
vectors of standardized data

As we already know, correlation is between -1 and 1 and its magnitude measures the tightness of a relationship.

NOT THE SLOPE

Primer Tutorials

(Prioritized)

http://www4.ncsu.edu/~slrace/LAprimer/index.html

► Tutorial 2 (Basic terminology)

12 minutes

Tutorials 3-4 (Matrix Arithmetic)

- 33 minutes
- ▶ Tutorial 5 (Applications of Arithmethic) 17 minutes
- Tutorial 13 (Basic Matrix Algebra)
 12 minutes
- ▶ Tutorial 15 (Norms&Distance Measures) **27 minutes**

101 minutes