Linear Algebra

Bootcamp

The 90 Minute Primer



Linear Algebra

» Study of functions/surfaces/spaces that do not bend

or curve.

» Scalar multiplication and addition.



Matrices and Vectors

» Arrays or lists of numbers.

» Indexed first by row (%) then by column (j) Xj;
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Vectors/Points

(Geometrically)

Vectors have both
direction and magnitude o aZ[ : )

/

Direction arrow points from | Magnitude is the length of

origin to the coordinate point that arrow ‘‘pythagoras




Matrix Arithmetic

(multi-dimensional math)



Addition

Element-wise
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Scalar Multiplication

Element-wise
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Scalar Multiplication
(Geometrically)

Bootcamp 1: Addition and Scalar Multiplication



Scalar Multiplication
(Geometrically)
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Vector Addition
(Geometrically)

p

Bootcamp 1: Addition and Scalar Multiplication



Vector Addition
(Geometrically)

addition 1is

still commutative

Bootcamp 1: Addition and Scalar Multiplication



Example: Centering the data

(Geometrically)
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Example: Centering the data
(Geometrically)

X




Example: Centering the data
(Geometrically)




Example: Centering the data
(Geometrically)

X




Example: Centering the data
(Geometrically)

X

New mean is the origin (0,0)




Linear Combinations

A linear combination of vectors is a just weighted sum:

oV, +0,V, +...+ ocvap

Coefficients o; Vectors v;




Linear Combinations
(Geometrically)
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Linear Combinations
(Geometrically)
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Multiplication

Bootcamp 2: Matrix Multiplication



Inner Product

(row x column)
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Bootcamp 2: Matrix Multiplication




Inner Product

(row x column)
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Bootcamp 2: Matrix Multiplication



Inner Product

(row x column)
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Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Inner-product view)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication
(Inner-product view)
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Sizes must

match up!

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Inner-product view)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Inner-product view)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Inner-product view)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Inner-product view)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Inner-product view)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Inner Product View)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Linear Combination View)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Linear Combination View)

Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication
(Linear Combination View)
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Bootcamp 2: Matrix Multiplication



Matrix-Vector Multiplication

(Linear Combination View)

Bootcamp 2: Matrix Multiplication



Matrix-Matrix Multiplication

Just a collection of matrix-vector products
(linear combinations) with different coefficients.
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Bootcamp 2: Matrix Multiplication



Matrix-Matrix Multiplication

(Inner Product View)

Bootcamp 2: Matrix Multiplication



Matrix-Matrix Multiplication

(Linear Combination View)

Bootcamp 2: Matrix Multiplication



Matrix-Matrix Multiplication

(Linear Combination View)

T e—
EEEE

Bootcamp 2: Matrix Multiplication



Matrix-Matrix Multiplication

(Linear Combination View)

Bootcamp 2: Matrix Multiplication



Matrix-Matrix Multiplication

(Linear Combination View)

Bootcamp 2: Matrix Multiplication




Matrix-Matrix Multiplication

(Linear Combination View)

Bootcamp 2: Matrix Multiplication



Bootcamp 2: Matrix Multiplication

Matrix-Matrix Multiplication

(Linear Combination View)




Matrix-Matrix Multiplication

(Linear Combination View)
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Bootcamp 2: Matrix Multiplication



Matrix-Matrix Multiplication

» MATRIX MULTIPLICATION IS NOT
COMMUTATIVE! AB #= BA

» Just a collection of matrix-vector products
(linear combinations) with different coefficients.

» Fach linear combination involves the same set of
vectors (the green columns) with different coefficients

(the purple columns).

» This has important implications!

Bootcamp 2: Matrix Multiplication



More Matrix Operations

and Special Matrices

Bootcamp 3: Special Matrices and Operations



Transpose Operator

The transpose of a matrix A, written A’ is

the matrix whose rows are the columns of A

.

Bootcamp 3: Special Matrices and Operations



Transpose Operator

The transpose of a matrix A, written A’ is

the matrix whose rows are the columns of A

The transpose is useful for forming meaningful matrix

products, typically of the form A'A .

Bootcamp 3: Special Matrices and Operations



The Identity Matrix

The identity matrix, denoted I is to matrix algebra what the

number 1 is to scalar algebra. The multiplicative identity.
When multiplied by the identity, a matrix remains unchanged.

Al = A
IA = A

Bootcamp 3: Special Matrices and Operations



The Identity Matrix

The identity matrix is a matrix of zeros with 1’s on the main

diagonal.
1 00 0
10 0 010 0
I1=[1]?I2=[:(l) :(l_’]’13=[o 1 0]’ .,In= 0 01 0
0 01

Bootcamp 3: Special Matrices and Operations



The Inverse Matrix

The inverse of a matrix A, should it exist, is denoted A™,
is a matrix for which multiplication by A results in the

identity matrix.
AA1T =T

A'A =1

Bootcamp 3: Special Matrices and Operations



The Inverse Matrix

All operations involving “cancelling” terms must be done with

an imverse matrix.

Bootcamp 3: Special Matrices and Operations



Systems of Equations



Systems of Equations

2x2 T 3X3 =8
2x1+3x2 +1x3 =5

X1 — Xp — ZX3 = —)
2 3 1 X, — 5
1 -1 -2 X, -3




Systems of Equations
(Three types)

In some applications, systems of equations have an

exact solution - but this is rare.

The system of equations may be a set of constraints
(=, =, 2). Infinitely many solutions within the

constraints and must optimize some other quantity:.

In most applications, there is no exact solution.

We introduce an error term and try to minimize it.



Systems of Equations
(Least Squares)

Obs Weight Width Length Time
1 3 5.4 6.3 10.11
2 1.1 1.2 2.1 4.25
3 2.4 3.4 5 8.09
4 1.9 2.8 8.1 7.20
5 3.2 6.1 4.5 9.90
6 2.7 3.7 4.6 7.75

Time = 3) + [3;Weight + $5,Width + $sLength



Systems of Equations
(Least Squares)

Obs Weight Width Length Time

1 3 5.4 6.3 10.11
2 1.1 1.2 2.1 4.25
3 2.4 3.4 5 8.09
4 1.9 2.8 3.1 7.20
O 3.2 0.1 4.5 9.90
6 2.7 3.7 4.6 (.79

Time = 3) + [3;Weight + $5,Width + $sLength

10.11 = 1By + 301 + 5.40, + 6.30;3
8.09 — ]‘BO + 2.4@1 + 3.4@2 + 563



Systems of Equations
(Least Squares)

Intercept Weight Width Length Time

3 5.4 6.3 10.11

1 1.1 1.9 21 4.95

) 2.4 3.4 5 b A 8.09

Bo |1 IPB 1o P8 55 |*5) 51 =] 720
' 3.9 6.1 A5 9.90

2.7 3.7 46 775




Systems of Equations

(Least Squares)

Time

Intercept Weight Width Length

' 3 5.4 6.3
1.1 1.2 2.1
2.4 3.4 D
1.9 2.8 8.1

1 3.2 6.1 4.5

1 2.7 3.7 4.6

;ﬁr__/

X

10.11

4.25
8.09

7.20
9.90

(.75
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Systems of Equations
(Least Squares)

y — XB (has no solutions. “inconsistent”)

Want to find 3 that gets the modeled values (y=X[3) on the

right as close as possible to the true values (y) on the left.
Minimize squared error
min Z c.2
B Ld

£=y-X[



Systems of Equations
(Least Squares)

Minimize squared error

e
or equivalently
min (y—XA) (y - Xp)
or equivalently

min || (y-XB)|



Systems of Equations
(Least Squares)

HOW to find the least squares solution?

The Normal Equations

X'XB = X'y
As long as X is full rank (no perfect multicollinearity),

X'X has an inverse and this system has an exact solution.

That solution IS the least squares solution.

p— (XTX)'XTy



We’re DONE talking about

regression in Linear Algebra class.

From now on, our focus is
on unsupervised problems that do

not have a target variable.



Norms, Distances,

and Similarity



Norms

» Norms are functions that measure the magnitude

or length of a vector.
» Written ||x|]

» 2-Norm (Euclidean norm) is the most common.

X ll,=y/x2 +x2 4.+ x> =xX




Norms

» The distance between two points, x and y, is the

norm of their difference.
Ix—yll

» We can use this information to determine which

points are more similar to each other.

» May create a distance matrix, D, which contains

pairwise distances between points (observations).

D, =llobs; —obs, |

9



Distance Matrix

GRE
A eF A B C D E
° o <0 1 1 3 4
b 21 0 1 5 5
OE
— D=[c1 1 0 4 3
~3 5 4 0 1
@4 5 3 1 O




Distance Matrix

GRE

GPA

Distance matrices are
symmetric




Distance Matrix

GRE

GPA

Distance can help us find
oroups of similar objects
(clusters)



Other Norms

» 1-Norm (Manhattan/CityBlock/Taxicab distance)

Ix Il =lx, [+ 1x, [+...4+1x |

» 00-Norm (Max Distance)

Ix Il =max{lx, [,Ix, |,....l x I}



Norms 1n Statistics

» Standard deviation: ¢ — 1 zn“(x B )_6)2
1=l

© o Jn-1\4

1
" X " +—— vector of
vn—1

centered data

» Correlation Coeflicient:

2. (6, = %)y =)

T
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centered data N i \
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Covariance and

Correlation

The Multivariate Normal Distribution



Normal (Gaussian)

Density Function

C(x—p)’
1 207
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Normal (Gaussian)
Data Points

x ~ N(OI1;
,uz(p ;2:1
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Normal (Gaussian)
Data Points

x ~ N(O;1)

o’ =1
Variance is the sum
of squared distances
from each point to
the mean (divided by n-1)
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Covariance

» Covariance i1s a number that describes how two

variables change together.

» If x increases/decreases, does y tend to increase/

decrease? Covariance can be negative.

» Is a parameter of the joint distribution of x and y

» joint distribution: how likely are we to see the

pair (x,y) together?

Bootcamp 6: Covariance



Joint Distribution of (x,y)

Probability(x,y)




Multivariate Normal

Distribution

Suppose x and y are normally distributed




Multivariate Normal

Distribution

The vector (x,y) is multivariate normally distributed

. y 0 @ @
o A1)
i 7 Ep?<p

mealnl  covariance
vector matrix

(x)d




Multivariate Normal

Distribution

The vector (x,y) is multivariate normally distributed

0
0 fht
Covariance Matrix Fun Facts | u o ZV' |

{ INneall covariance
| vector matrix

te Variances of each variable on
~ the main diagonal »
te Covariances of each pair of variables |

| on the off diagonal
|+ Always symmetric



Multivariate Normal

Distribution

(): How can we characterize a point as rare?

A: Not just constant distance

around the mean!

Q. | -0 X
0. N
-4 4
0 el T 0 3o ellipse
4 4

Bootcamp 6: Covariance



Multivariate Normal Distribution
Var(X)=Var(y) and Covariance = 0

-10

-10 -5 0 5 10

Bootcamp 6: Covariance



Multivariate Normal Distribution
Var(X)=Var(y) and Covariance = 4

-10

-10 -5 0 5 10

Bootcamp 6: Covariance x



Multivariate Normal Distribution

Bootcamp 6: Covariance

10

-10

Var(X)=Var(y) and Covariance = -8

-10 -5 0 5 10




Multivariate Normal Distribution
Var(X)=3*Var(y) and Covariance = 0

-10

-10 -5 0 5 10

Bootcamp 6: Covariance x



Var(X)=Var(y) and Covariance = 0  Var(X)=Var(y) and Covariance = 4

o
—

-10

o
—

-10

Bootcamp 6: Covariance

-10 -5 0 5 10 -10 -5 0 5 10

o
-

-10




Covariance

vectors of

Covariance 1s calculated from the data: centered data

7

Cov(x,y)=-5) (x, = X)(y, - y)=-x"y
=]

When covariance is positive:

x larger than mean, y tends to be larger than the mean
x smaller than the mean, y tends to be smaller than the mean

When covariance is negative:

x larger than mean, y tends to be smaller than the mean
x smaller than the mean, y tends to be larger than the mean

The units will have a strong effect on this number
so we cannot interpret magnitude, only sign!!

Bootcamp 6: Covariance



Correlation

Correlation i1s the covariance of the

standardized data:

n
— _1 (x,—x) O=y) _ 1 r
Corr(x,y) =75 ) & =Xy
i=1

‘& vectors of

standardized data

As we already know, correlation is between -1 and 1 and
its magnitude measures the tightness of a relationship.

NOT THE SLOPE



Primer Tutorials
(Prioritized)

http://www4.ncsu.edu/~slrace/LAprimer/index.html

Tutorial 2 (Basic terminology) 12 minutes
Tutorials 3-4 (Matrix Arithmetic) 33 minutes
Tutorial 5 (Applications of Arithmethic) 17 minutes
Tutorial 13 (Basic Matrix Algebra) 12 minutes

Tutorial 15 (Norms&Distance Measures) 27 minutes

101 minutes


http://www4.ncsu.edu/~slrace/LAprimer/index.html

