Linear Algebra Bootcamp

The 90 Minute Primer

Linear Algebra

- Study of functions/surfaces/spaces that do not bend or curve.
- ${\boldsymbol \cdot}$ Scalar multiplication and addition.

Matrices and Vectors

- Arrays or lists of numbers.
- Indexed first by row (i) then by column (j) \mathbf{X}_{ij} \mathbf{v}_i

$$\mathbf{X} = \begin{pmatrix} 1 & 8 & 7 & -1 \\ 4 & 9 & 6 & 9 \\ -3 & -4 & 9 & 8 \\ -2 & -1 & 10 & 3 \\ 3 & -3 & 1 & 7 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} 0.3 \\ -1 \\ 1.2 \\ -1 \end{pmatrix}$$

Vectors/Points

(Geometrically)

 $\begin{tabular}{ll} Vectors have both \\ {\bf direction} \ {\bf and} \ {\bf magnitude} \\ \end{tabular}$

 $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Direction arrow points from origin to the coordinate *point*

Magnitude is the length of that arrow #pythagoras

Matrix Arithmetic

(multi-dimensional math)

Example: Centering the data (Geometrically) x_{2} x_{1} New mean is the origin (0,0)

Linear Combinations

A linear combination of vectors is a just weighted sum:

Linear Combinations (Geometrically)	
Multiplication	

Matrix-Vector Multiplication (Inner-product view)

Matrix-Vector Multiplication (Inner-product view)

Matrix-Vector Multiplication (Inner-product view)

Matrix-Vector Multiplication (Inner Product View)

Matrix-Vector Multiplication (Linear Combination View)

Matrix-Vector Multiplication (Linear Combination View)

Matrix-Matrix Multiplication

Just a collection of matrix-vector products (linear combinations) with different coefficients.

Matrix-Matrix Multiplication

(Inner Product View)

$$(\mathbf{A}\mathbf{B})_{ij} = \mathbf{A}_{i\star}\mathbf{B}_{\star j}$$

Matrix-Matrix Multiplication

- MATRIX MULTIPLICATION IS NOT COMMUTATIVE! AB ≠ BA
- Just a collection of matrix-vector products (linear combinations) with different coefficients.
- Each linear combination involves the same set of vectors (the green columns) with different coefficients (the purple columns).
- This has important implications!

More Matrix Operations and Special Matrices

Transpose Operator

The transpose of a matrix A, written A^T is the matrix whose columns are the rows of A

$$\mathbf{A} = \left(\begin{array}{c|cccc} 1 & 2 & 3 & 4 \end{array}\right)$$

Transpose Operator

The transpose of a matrix A, written A^T is the matrix whose columns are the rows of A

The transpose is useful for forming meaningful matrix products, typically of the form $\mathbf{A}^T\mathbf{A}$.

The Identity Matrix

The **identity matrix**, denoted **I** is to matrix algebra what the number 1 is to scalar algebra. The multiplicative identity.

When multiplied by the identity, a matrix remains unchanged.

$$AI = A$$

$$IA = A$$

The Identity Matrix

The identity matrix is a matrix of zeros with 1's on the main diagonal.

$$I_1 = [1], I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \dots, I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

The Inverse Matrix

The **inverse** of a matrix **A**, should it exist, is denoted **A**⁻¹, is a matrix for which multiplication by **A** results in the identity matrix.

$$\mathbf{A}\mathbf{A}^{\text{-}1}\!=\mathbf{I}$$

$$\mathbf{A}^{\text{-}1}\mathbf{A} = \mathbf{I}$$

The Inverse Matrix

All operations involving "cancelling" terms must be done with an inverse matrix.

$$Ax = \lambda x$$
?

Systems of Equations

$$\begin{cases} 2x_2 + 3x_3 = 8 \\ 2x_1 + 3x_2 + 1x_3 = 5 \\ x_1 - x_2 - 2x_3 = -5 \end{cases}$$

$$\begin{pmatrix} 0 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \\ -5 \end{pmatrix}$$

Systems of Equations (Three types)

- In some applications, systems of equations have an **exact solution** but this is rare.
- The system of equations may be a set of constraints
 (≤, =, ≥). Infinitely many solutions within the constraints and must optimize some other quantity.
- In most applications, there is **no exact solution**. We introduce an error term and try to minimize it.

(Least Squares)

Obs	Weight	$\underline{\text{Width}}$	Length	Time
1	3	5.4	6.3	10.11
2	1.1	1.2	2.1	4.25
3	2.4	3.4	5	8.09
4	1.9	2.8	8.1	7.20
5	3.2	6.1	4.5	9.90
6	2.7	3.7	4.6	7.75

 $\mathbf{Time} = \beta_0 + \beta_1 \mathrm{Weight} + \beta_2 \mathrm{Width} + \beta_3 \mathrm{Length}$

Systems of Equations

(Least Squares)

 $\mathbf{Time} \diagup \beta_0 + \beta_1 \mathrm{Weight} + \beta_2 \mathrm{Width} + \beta_3 \mathrm{Length} + \boldsymbol{\mathcal{E}}$

(Least Squares)

Intercept	Weight	$\underline{ ext{Width}}$	Length	Time
/1	3	5.4	6.3	/10.11\
1	1.1	1.2	2.1	4.25
1	2.4	3.4	5	8.09
1	1.9	2.8	8.1	7.20
1	3.2	6.1	4.5	9.90
\ 1	2.7	3.7	$_{4.6}$ /	\ _{7.75} /
		<u> </u>		
	2	X		\mathbf{y}

Time =
$$\beta_0 + \beta_1 \text{Weight} + \beta_2 \text{Width} + \beta_3 \text{Length} + \varepsilon$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \varepsilon$$

Systems of Equations

(Least Squares)

$$y=Xeta$$
 (has no solutions. "inconsistent")

Want to find β that gets the modeled values $(\hat{y}=X\beta)$ on the left as close as possible to the true values (y) on the right.

Minimize squared error

$$\min_{\beta} \sum_{i} {arepsilon_{i}}^{2}$$

$$arepsilon=\mathrm{y}$$
 - $\mathbf{X}oldsymbol{eta}$

(Least Squares)

Minimize squared error

$$\min_{\beta} \, \sum_{i} {\epsilon_{i}}^{2}$$

$$arepsilon=\mathrm{y}$$
 - $\mathbf{X}oldsymbol{eta}$

or equivalently

$$\min_{\beta} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

or equivalently

$$\min_{\beta} \| (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \|_2^2$$

Systems of Equations

(Least Squares)

HOW to find the least squares solution?

The Normal Equations

$$\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^T\mathbf{y}$$

As long as X is full rank (no perfect multicollinearity), $\mathbf{X}^{T}\mathbf{X}$ has an inverse and this system has an exact solution.

That solution ${f IS}$ the least squares solution.

$$\boldsymbol{\beta} = (\mathbf{X}^T\mathbf{X})^{\text{-}1}\mathbf{X}^T\mathbf{y}$$

We're DONE talking about regression in Linear Algebra class. From now on, our focus is on unsupervised problems that do not have a target variable.	
Norms, Distances, and Similarity	

Norms

- ightharpoonup Norms are functions that measure the magnitude or length of a vector.
- ightharpoonup Written $||\mathbf{x}||$
- 2-Norm (Euclidean norm) is the most common.

$$\|\mathbf{x}\|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + ... + x_{n}^{2}} = \sqrt{\mathbf{x}^{T}\mathbf{x}}$$

Norms

 ${\boldsymbol \cdot}$ The distance between two points, ${\boldsymbol x}$ and ${\boldsymbol y},$ is the norm of their difference.

$$\|\mathbf{x} - \mathbf{v}\|$$

- We can use this information to determine which points are more similar to each other.
- May create a **distance matrix**, **D**, which contains pairwise distances between points (observations).

$$\mathbf{D}_{ij} = \| obs_i - obs_j \|$$

Distance Matrix

Other Norms

 $\bullet \ \, \hbox{1-Norm (Manhattan/CityBlock/Taxicab distance)} \\$

$$\|\mathbf{x}\|_{1} = |x_{1}| + |x_{2}| + \ldots + |x_{n}|$$

▶ ∞-Norm (Max Distance)

$$\|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\}$$

Norms in Statistics

• Standard deviation:

• Correlation Coefficient:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Covariance and Correlation

The Multivariate Normal Distribution

Normal (Gaussian) Density Function

Covariance

- Covariance is a number that describes how two variables change together.
- If x increases/decreases, does y tend to increase/decrease? Covariance can be negative.
- ightharpoonup Is a parameter of the **joint distribution** of x and y
 - joint distribution: how likely are we to see the pair (x,y) together?

Multivariate Normal Distribution

Suppose **x** and **y** are normally distributed

Multivariate Normal Distribution

The vector (x,y) is multivariate normally distributed

Multivariate Normal Distribution

The vector (x,y) is multivariate normally distributed

$$\begin{pmatrix} x \\ y \end{pmatrix} \sim \mathcal{N} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} \right]$$

Covariance Matrix Fun Facts

- Variances of each variable on the main diagonal
- Covariances of each pair of variables on the off diagonal
- Always symmetric

 μ mean
vector $\Sigma_{p \times p}$ covarianc
matrix

Multivariate Normal Distribution How can we characterize a point as r

Covariance

Covariance is calculated from the data:

centered data
$$\frac{1}{1} \mathbf{x}^T \mathbf{v}$$

vectors of

 $Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} \mathbf{x}^T \mathbf{y}^*$

When covariance is positive:

x larger than mean, y tends to be larger than the mean x smaller than the mean, y tends to be smaller than the mean

When covariance is negative:

x larger than mean, **y** tends to be smaller than the mean

x smaller than the mean, **y** tends to be larger than the mean

The units will have a strong effect on this number so we cannot interpret magnitude!!

Correlation

Correlation is the covariance of the standardized data:

$$Corr(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \overline{x})}{s_x} \frac{(y_i - \overline{y})}{s_y} = \frac{1}{n-1} \mathbf{X}^T \mathbf{y}$$
vectors of standardized data

As we already know, correlation is between -1 and 1 and its magnitude measures the strength of a relationship.

NOT THE SLOPE

(Some) Conclusions

- Matrix arithmetic is a series of multiplications and additions done neatly in one operation
- Linear algebra will help us think about multivariate data geometrically
- Norms, Distances and Similarities between points in space will be the basis for many algorithms
- Covariance Matrix tells us about the shape of an elliptical probability distribution (think normal distribution) in space.
- Correlation is the covariance of the standardized data.

Feel like this in class today? **Primer Tutorials** (Prioritized) http://www4.ncsu.edu/~slrace/LAprimer/index.html ▶ Tutorial 2 (Basic terminology) 12 minutes → Tutorials 3-4 (Matrix Arithmetic) 33 minutes • Tutorial 5 (Applications of Arithmethic) 17 minutes → Tutorial 13 (Basic Matrix Algebra) 12 minutes • Tutorial 15 (Norms&Distance Measures) 27 minutes 101 minutes