
Principal 
Components Analysis

(PCA)

From last time:

‣ Covariance/Correlation matrices are symmetric 

‣ Symmetry ⇒ eigenvectors are orthogonal 

‣ Eigenvectors are ordered by magnitude of their 
eigenvalues.



Principal Components
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The first principal component is the first eigenvector of 
the covariance matrix and points in the direction of 

maximal variance

Principal Components
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The second principal component is the second eigenvector  
of the covariance matrix and points in the direction, orthogonal 

to the first, that has maximal variance

v2



Principal Components
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Principal components provide us with a new orthogonal 
basis where the coordinates of the data points are  

uncorrelated.

Eigenvalues give Variance
The corresponding eigenvalues, 𝜆1 and 𝜆2, tell us the 

amount of variance in each direction.



Eigenvalues give Variance
The corresponding eigenvalues, 𝜆1 and 𝜆2, tell us the 
amount of variance in each new direction. Same as 
saying the variance of the new variables v1 and v2.  
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Computed in the same 
old way, using the 

coordinates of the data 
in new basis.

Total Variance
We’ll define the total amount of variance to be the 

sum of the variances of each variable:

Total Variance =var(x1)+var(x2)

Once we change to the principal component basis,  
we have new variables, v1 and v2, which would provide

Total Variance = 𝜆1 + 𝜆2



Total Variance

The cool fact is, the total amount of variance is the same 
 no matter what orthogonal basis you consider!

var(x1)+var(x2)  =  𝜆1 + 𝜆2

In general, the total amount of variance will be the 
trace of the covariance matrix. (Sum of diagonal elements)

Proportion of Variance
Therefore, the proportion of total variance directed along 
(or explained by) the first principal component would be:

λ1
λ1 + λ2

Likewise, for the second component:

λ2
λ1 + λ2



Proportion of Variance
In general, when we have many components: 

‣ Eigenvalues give variance of each 

component 
‣ Sum of eigenvalues gives the total variance 
‣ Total variance is equal to the sum of variances 

of each original variable

The proportion of variance explained by the ith component is

Proportion of Variance

λi

λ j
j=1

p

∑

λi
i=1

k

∑

λ j
j=1

p

∑

The cumulative proportion of variance explained by the first k 
components is 



Practice

1
2

Suppose we have a dataset with 8 variables and we used 
standardized data. (Note, this would amount to running a PCA 

on the correlation matrix)  
a) How many eigenvalues would we have in this case?  
b) What would be the sum of the eigenvalues?

Suppose I have a dataset with 3 variables and the eigenvalues of 
the covariance matrix are: 

𝜆1=3   𝜆2=2   𝜆3=1 
a) What proportion of variance explained by 1st PC? 
b) What is the variance of the second PC? 
c) What proportion of variance is captured by using both the 

first and second principal components?

Another Look at  
Zero Eigenvalues
What would it mean if 𝜆2=0? 

 
Variance along that direction is exactly zero. 

x1

x2



Another Look at  
Zero Eigenvalues

All data points have exactly the same coordinate along v2 

Original variables x1 and x2 are perfectly correlated.  

x1

x2

Data is essentially  
1-dimensional! v1 alone 
explains 100% of the 
variation in x1 and x2 

Small Eigenvalues
When Eigenvalues are close to zero…

…the span of the principal components

…onto a subspace

‣ Not much variance in this direction 
‣ Won’t lose much by ignoring or dropping this component

Dropping components ⇒ Orthogonal Projection

#DimensionReduction



Multicollinearity 
(Geometrically)

in R!

Scree plot
Plot of the eigenvalues. Sometimes used to guess the number 

of latent components by finding an ‘elbow’ in the curve.
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Coordinates in the  
New Basis

To find the new coordinates (called the scores) of the data 
in the new basis of principal components, we use the fact  

that principal components are linear combinations of original 
variables with weights given by the loadings.
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Coordinates in the  
New Basis
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Coordinates in the  
New Basis
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Prin1: New variable in your spreadsheet. The coordinates of the 
data projected onto the direction of the first principal component



Coordinates in the  
New Basis

x1 x2( (x3 x4 x5X= (( = ((
Prin1 Prin2 Prin3

Loadings

Can do this for all components at once, which amounts to 
matrix multiplication. XV where V is matrix of eigenvectors (i.e. 
loadings).

Original Data 
(Centered/Standardized)

Summary of Output
3 Major Pieces of Output: 

1. Eigenvectors (Principal Components, Variable 
Loadings, sometimes called Rotation Matrix) 

‣ output window in SAS 

2. Eigenvalues (Variances of the new variables) 

3. Coordinates of Data in the new basis (often 
called scores or scored data)  

‣ output dataset in SAS



Correlation matrix vs. 
Covariance matrix

PCA can be done using eigenvectors of either the 
covariance matrix or the correlation matrix. 

‣ Default in SAS is correlation 

‣ Default in R is covariance (for most packages - check!) 

Recall: The correlation matrix is simply the covariance matrix of 
the standardized data.

Correlation matrix vs. 
Covariance matrix

‣ Data is centered (essentially unchanged) and 
directions of maximal variance are drawn 

‣ Use when scales are not very different 

‣ Data is centered and normalized/standardized 
before directions of maximal variance are drawn. 

‣ Use when scales of variables are very different

Correlation PCA

Covariance PCA



Why not always use correlation matrix? 
What could it hurt?

SAS Example: Test Scores

‣ Scores for 100 students on 5 tests 

‣ An illustrative example, not a practical one (5 
variables not likely to be reduced via PCA).





SAS’s terrible problem

SAS will not perform a typical PCA for datasets 
with fewer observations than variables. 

For our examples like this we will use R


