Principal Component Regression and Partial Least Squares (PLS)

Biased Regression Techniques

UNbiased Regression

$$X\hat{\beta} = \hat{y}$$

$$E(\hat{\beta}) = \beta$$

mean of the distribution of all possible sample parameters

population "truth"

$$X\hat{\beta} = \hat{y}$$

mean of the distribution of all possible sample parameters

population "truth"

Unbiased but not precise

Unbiased but not precise

Biased but precise

Unbiased but not precise

Biased but precise

- What do you lose?
 - Statistical testing of significance

- What do you gain?
 - (Hopefully) Predictive accuracy on validation data

Dealing with Multicollinearity

- ▶ PCA gives us a new representation of our data that is completely uncorrelated.
- ▶ HOWEVER, using all the principal components does not solve the underlying problem of multicollinearity. It just hides it through rotation.
- Must drop some components to solve severe multicollinearity.

Principal Components Regression

▶ Want to model target, y as a function of x's:

$$\mathbf{y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{x}_1 + \boldsymbol{\beta}_2 \mathbf{x}_2 + \ldots + \boldsymbol{\beta}_p \mathbf{x}_p + \epsilon$$

• Use the principal components (the scores for each observation) as your new predictor variables.

$$\mathbf{y} = \alpha_0 + \alpha_1 \operatorname{prin}_1 + \alpha_2 \operatorname{prin}_2 + \ldots + \alpha_k \operatorname{prin}_k + \epsilon$$

Principal Components Regression

• Use the fact that the principal components are linear combinations of your original variables to get back to the β 's (for interpretation):

$$prin 1 = \mathbf{v}_{11} \mathbf{x}_1 + (\mathbf{v}_{21} \mathbf{x}_2 + \dots + (\mathbf{v}_{p1} \mathbf{x}_p))$$

Entries from the eigenvectors (loadings)

Replacement math for correlation PCA

$$\tilde{\mathbf{y}} = \frac{\mathbf{y} - \bar{\mathbf{y}}}{s_y} \quad \tilde{\mathbf{x}} = \frac{\mathbf{x} - \bar{\mathbf{x}}}{s_x}$$

$$\tilde{\mathbf{y}} = \alpha_{1}PC_{1} + \alpha_{2}PC_{2} + \cdots + \alpha_{p}PC_{p} + \epsilon$$

$$PC_{j} = \mathbf{V}_{1j}\tilde{\mathbf{x}}_{1} + \mathbf{V}_{2j}\tilde{\mathbf{x}}_{2} + \cdots + \mathbf{V}_{pj}\tilde{\mathbf{x}}_{p}$$

$$\mathbf{y} = \beta_{0} + \beta_{1}\mathbf{x}_{1} + \cdots + \beta_{p}\mathbf{x}_{p} + \epsilon$$

$$\beta_{j} = \frac{s_{y}}{s_{x_{j}}}(\mathbf{V}_{j1}\alpha_{1} + \mathbf{V}_{j2}\alpha_{2} + \cdots + \mathbf{V}_{jp}\alpha_{p})$$

$$\beta_{0} = \bar{\mathbf{y}} - \beta_{1}\bar{\mathbf{x}}_{1} - \beta_{2}\bar{\mathbf{x}}_{2} - \cdots - \beta_{p}\bar{\mathbf{x}}_{p}$$

Choosing the number of components for PCR

(cross-validation)

7-Fold Cross Validation.

(At Completion)

(At Completion)

MSE=.1 MSE=.2 MSE=.3 MSE=.1 MSE=.2 MSE=.1

Average out-of-sample MSE for the trained model: $(.1+.2+.3+.1+.2+.2+.1)/7 = \mathbf{0.17}$

We'd repeat this process, training r different models using $1, 2, 3, \ldots, r$ principal components.

In this example, each of the r models would be trained and tested 7 different times (once at each CV iteration).

Applying Principal Component Regression

Baseball data: Inputs

AtBat: Number of times at bat in 1986

Hits: Number of hits in 1986

<u>HmRun</u>: Number of home runs in 1986

Runs: Number of runs in 1986

RBI: Number of runs batted in in 1986

Walks: Number of walks in 1986

 $\underline{\underline{Years}}$: Number of years in the major leagues

<u>CAtBat</u>: Number of times at bat during

his career <u>CHits</u>: Number of hits during his career

<u>CHmRun</u>: Number of home runs during

his career

<u>CRuns</u>: Number of runs during his career

<u>CRBI</u>: Number of runs batted in during his career

<u>CWalks</u>: Number of walks during his career

<u>League</u>: A factor with levels A and N indicating player's league at the end of 1986

<u>Division</u>: A factor with levels E and W indicating player's division at the end of 1986

<u>PutOuts</u>: Number of put outs in 1986

Assists: Number of assists in 1986

Errors: Number of errors in 1986

<u>NewLeague</u>: A factor with levels A and

N indicating player's league at the

beginning of 1987

Goal: Predict 1987 Salary

Principal Component Regression

principal components regression

CV Result: Use 4 components to minimize out-of-sample error.

CV Chart Interpretation

X Rsq refers to % of variance explained by this PC.
Y Rsq refers to the R² for predicting y with just this PC.

Finalize Model

specify number of components from CV

Give us parameters in terms of original variables

Finalize Model

Parameter Estimates	
	Salary
Intercept	-92.35271090
Years	6.31662935
Walks	1.39791674
Runs	1.13111785
RBI	1.19183885
PutOuts	0.04771647
league A	-22.82063342
league N	22.82063342
HmRun	2.49288572
Hits	0.65652664
Errors	1.41196754
division E	68.60920143
division W	-68.60920143
CWalks	0.13896648
CRuns	0.11692262
CRBI	0.11655947
CHmRun	0.41285542
CAtBat	0.01636646
AtBat	0.20028408
Assists	0.07016641

What? No testing?

- Would it really make sense?
- How much of salary is due to home runs this year vs. hits this year? career home runs vs home runs this year?

A Big Data Example where PCR destroys OLS

The Big Data Set

- ▶ 500,000 observations
- ▶ 120 numeric input variables labelled **v1-v120**
- ▶ 1 numeric target variable labelled **target**
- ▶ 1 variable indicating test set labelled test
 (i.e. test=1 for test obs, test=0 for training obs)
- ▶ Source of the data? top-secret.

1.) Implement OLS Regression

2.) Score Test Data

```
proc reg data=public.bigdatapcr(datalimit=all where=(test=0)) outest=OLS;
   OLS: model target=v1--v120 /vif;
   run;
                                                       Output
  Variance
                                    Only use
               Data Exceeded
                                                     Parameter
  Inflation
                 Size Limit.
                                     training
                                                    Estimates for
   Factors
                                  observations
                  Override.
                                                     Proc Score
```

1.) Implement OLS Regression

2.) Score Test Data

```
proc reg data=public.bigdatapcr(datalimit=all where=(test=0)) outest=OLS;
   OLS: model target=v1--v120 /vif;
   run;
                                                        Input
                                                      Parameter
  Output scored
                                 Only use
                                                   Estimates from
    test data to
                                    test
                                                      Proc Reg
   dataset out
                               observations
proc score data=public.bigdatapcr(datalimit=all where=(test=1)) score=OLS
```

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	В	2.17843	0.08203	26.56	<.0001	0
v1	В	-0.00711	0.02301	-0.31	0.7571	5.84603
v2	В	-0.00597	0.00855	-0.70	0.4850	1.16118
v3	В	-0.00783	0.00305	-2.57	0.0103	1.20244
v4	В	-0.00459	0.00089012	-5.15	<.0001	1.10480
v5	В	-0.00001596	0.00001481	-1.08	0.2810	1.94898
v6	В	-0.00002410	0.00002048	-1.18	0.2391	3.28746
v7	В	0.00002350	0.00002113	1.11	0.2660	3.33584
v8	В	0.00002434	0.00001323	1.84	0.0659	1.45397
v 9	В	0.25536	0.01234	20.69	<.0001	3.01983
v10	В	0.63231	0.05127	12.33	<.0001	19.55051
v11	В	0.00004157	0.00003499	1.19	0.2349	1.90771
v12	В	0.00003607	0.00003431	1.05	0.2932	1.82003
v13	В	-0.00007442	0.00002376	-3.13	0.0017	1.47444
v14	В	-0.00054214	0.00007702	-7.04	<.0001	1.96191
v15	В	0.06254	0.01455	4.30	<.0001	1.52030
v16	В	0.04172	0.05750	0.73	0.4681	22.08305
v17	В	-0.00000308	0.00001452	-0.21	0.8320	1.61480
v18	В	-0.01196	0.00683	-1.75	0.0798	28800
v19	В	0.04948	0.00553	8.95	<.0001	18897
v20	В	-0.03926	0.00807	-4.86	<.0001	40244
v21	В	1.75109E-15	5.93136E-15	0.30	0.7678	1.00342
v22	В	-0.00472	0.00190	-2.48	0.0130	7.19173
v23	В	-0.00226	0.00150	-1.51	0.1320	8.36047
v24	В	-0.00926	0.00161	-5.77	<.0001	26.64846
v25	В	-0.00115	0.00072775	-1.57	0.1156	35.95481
v26	В	-0.00021726	0.00065726	-0.33	0.7410	58.42737
v27	В	0.02181	0.00239	9.13	<.0001	1128.53911

	v66	В	-0.06152	0.01929	-3.19	0.0014	126.54519
	v67	В	0.00011494	0.00001435	8.01	<.0001	1.73115
	v68	В	-0.01006	0.00127	-7.95	<.0001	1.87201
	v69	В	0.00615	0.00257	2.40	0.0165	69.53026
	v70	В	0.00969	0.00113	8.61	<.0001	23.53995
	v71	В	-0.02213	0.00196	-11.28	<.0001	198.17739
	v72	В	-0.01213	0.00167	-7.28	<.0001	237.71557
	v73	В	0.00961	0.00116	8.27	<.0001	153.42279
	v74	В	-0.02312	0.00190	-12.19	<.0001	735.58916
	v75	В	0.00060135	0.00054701	1.10	0.2716	160.79102
	v76	В	0.00197	0.00017361	11.32	<.0001	25.00046
	v77	В	0.31646	0.03731	8.48	<.0001	2.81921
	v78	В	2.07168E-12	1.13209E-12	1.83	0.0673	5.95465
	v79	В	-0.00485	0.00102	-4.75	<.0001	2.09786
	v80	В	-0.01972	0.01003	-1.97	0.0494	1.00647
	v81	В	-0.02376	0.00115	-20.72	<.0001	71.23798
	v82	В	0.41100	0.04509	9.12	<.0001	3.56955
	v83	В	0.02198	0.00122	18.01	<.0001	49.17466

- 3) Compute PCR:
- a) Find optimal number of components
- b) Use optimal number of components

```
proc pls data=public.bigdatapcr(datalimit=all where=(test=0))
    method=pcr
    cv=random(niter=2 seed=100816);
    model target=v1--v128;
run;

Only use
    training
    observations
```

- 3) Compute PCR:
- a) Find optimal number of components
- b) Use optimal number of components

```
proc pls data=public.bigdatapcr(datalimit=all where=(test=0))

method=pcr
cv=random(niter=2 seed=100816);
model target=v1--v128;

run;

Use ods output and
solution option to get
parameter estimates for
use in proc score
```

- 4) Score test data with PCR model:
- a) Create score table from ods output

```
proc transpose data=PCR estimates out=PCR estimates;
    id rowname;
run;
                        Compare the table work.OLS with
data PCR estimates;
    set PCR estimates;
                             work.PCR estimates
    type = 'parms';
    model = 'PCR';
    depvar ='Overall';
                          These two procedures transform
    drop _name_;
                       work.PCR estimates to match the
run;
                              structure of work.OLS
```

4) Score test data with PCR model:b) score test data with proc score

```
Output from first
proc score contained
original data plus OLS
predicted values. By using
```

that version of data we'll have both predictions on same table

- 5) Compare the two models
- a) via R²
- b) via RMSE

And the winner is: PCR

```
proc corr data=out2;
  var PCR ols;
  with target;
run;
target
```

```
        Pearson Correlation Coefficients, N = 200000

        Prob > |r| under H0: Rho=0

        PCR
        OLS

        target
        0.38610
        0.35339

        <.0001</td>
        <.0001</td>
```

Partial Least Squares (PLS)

Supervised vs. Unsupervised

▶ PCA is an <u>unsupervised</u> method of analysis

The directions of maximal variance do not take into account a target/response variable **y**

▶ PLS is a <u>supervised</u> alternative to PCA

The directions are drawn to not only best summarize the \mathbf{X} data but also to best predict a target/response variable \mathbf{y} .

Partial Least Squares

- First PLS direction \mathbf{z}_1 is a linear combination of predictor variables where the coefficient of \mathbf{x}_j is the simple linear regression coefficient of \mathbf{y} on \mathbf{x}_j
 - => highest weight on variables most correlated with y.
- Then, data is orthogonalized and next direction drawn in same manner. Repeat until **p** components.

Partial Least Squares

- Popular in some scientific disciplines, particularly when more than one target/response variable.
- In practice, does not perform better than PCR or Ridge regression (...coming in Fall 3)

Partial Least Squares on Big Data Example

- 1) Implement PLS
- a) Compute optimal number of components
- b) Create model

```
Just change method to PLS!

proc pls data=public.bigdatapcr(datalimit=all where=(test=0))
    method=pls
    cv=random(niter=2 seed=100816);
    model target=v1--v128;

run;

2-fold Cross-Validation to determine # Components
```

- 2) Score test data with PLS model
- a) Create score table from ods output

```
proc transpose data=PLS_estimates out=PLS estimates;
   id rowname;
run;
                        Compare the table work.OLS with
data PLS_estimates;
   set PLS_estimates;
                             work.PLS estimates
   type ='parms';
   model = 'PLS';
   depvar ='Overall';
                         These two procedures transform
   drop _name_;
                       work.PLS estimates to match the
run;
                             structure of work.OLS
```

4) Score test data with PLS model:b) score test data with proc score

```
proc score data=out2 score=PLS_estimates type=parms predict out=out3;
  var v1--v120;
run;
```

Output from second proc score contained original data plus OLS predicted values and PCR predicted values. By using that version of data we'll have all 3 predictions on same table

That final table called **out3**

- 5) Compare the three models
- a) via R²
- b) via RMSE And the winner is: PCR.

```
proc corr data=out2;
    var PCR ols;
    with target;
run;
```

```
        Pearson Correlation Coefficients, N = 200000

        Prob > |r| under H0: Rho=0

        PCR
        OLS
        PLS

        target
        0.38610
        0.35339
        0.36227

        <.0001</td>
        <.0001</td>
        <.0001</td>
```

still.