The Singular Value
Decomposition (SVD)

The matrix factorization behind PCA



Singular Value Decomposition

(SVD)
For any n x p matrix X with rank=r

There exists orthogonal matrices Upm and Vo,
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SVD, Illustrated




SVD, Illustrated
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Skinny SVD

Typically r=p
because our matrix
should be full rank!

No Perfect Multicollinearity




Skinny SVD
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Skinny SVD

Singular Yectors




SVD Fun Facts

» Right singular vectors (rows of VT) are the

(orthonormal) eigenvectors of XTX

» Left singular vectors (columns of U) are the

(orthonormal) eigenvectors of XXT

» Singular values are the square roots of the eigenvalues.
(XXTand XTX have the same eigenvalues.)



SVD Fun Facts

If X contains centered/standardized

» Right singular vectors (rows of V1) are the data then X™X is the
covariance/correlation matrix

(orthonormal) eigenvectors of@ and the singular vectors

are principal components! Its PCA!

» Left singular vectors (columns of U) are the

(orthonormal) eigenvectors of XXT

» Singular values are the square roots of the eigenvalues.
(XXTand XTX have the same eigenvalues.)



PCA from SVD
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PCA from SVD
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Slide Flashback

(Factor Analysis Lecture)
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Slide Flashback

(PCA Lecture)
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Orthogonal Matrix
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Slide Flashback

(Orthogonality Lecture)
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» An orthogonal matrix is easy to maneuver inside

matrix equations, since V-1 = V1

» For example if U and V are orthogonal, the
following equations are equivalent:

Xv=UD
X =UDV’
U'X=DV’'




What’s the point

» PCA IS the SVD on centered or standardized data.

» Sometimes, practitioners opt for the regular
uncentered SVD rather than PCA.

» True especially in genomics/text/image analysis



Dimension Reduction

—
Noise Reduction



Resolving a Matrix into

Components

Let U =[U,IU,I...1U,] and V' =

(the left and right singular vectors) ‘;T

Then, X=U,D,V/ =) o,UV/
=1

=o UV +0,UV/ +0, UV +..40 UV’ |
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LIt’S ‘just’ matrix multiplication - sum is visualized next slide:l
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Resolving a Matrix into

Components

X =— ZG
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Signal-to-Noise Ratio

and

Noise Reduction

X = +0@+0
Think of ’rese as

“unit basis directions”
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Signal-to-Noise Ratio

and

Noise Reduction

X:@lef U2V2T 3V3T .. U,,V,,T

Think of these as coordinates that say how

S

| much “signal” or information of the matrix X
Is directed along each basis direction.
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The components are ordered by

| the magnitude of the signal.

|
O1=02=._. =0
- T - r 1




Signal-to-Noise Ratio

and

Noise Reduction

X=0,UV, +0,U,V, +o,UV, +...+0 UV’

e

—— S
Anytime we have signal, we gl

inevitably have some noise.

| |

Our data is typically an imperfect
depiction of reality.
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Signal-to-Noise Ratio

and

Noise Reduction

X=0,UV, +0,U,V, +o,UV, +...+0 UV’
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If we assume there is no pattern fo the noise -

That it is uniformly distributed “in every direction” |

| Then amount of noise in each of the terms in this

| sum is the same!
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Signal-to-Noise Ratio

and

Noise Reduction

X=0,UV, +0,U,V, +o,UV, +...+0 UV’

— — — — 1

The amount of signal in Mr The amount of noise in

each of the ferms in this || each of the fterms in this
sum is decreasing — | sum is the same.
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The signal-to-noise ratio is higher in first terms.

i Last terms could be mostly noise
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Signal-to-Noise Ratio

and

Noise Reduction

X=0,U,V/ +0,U,V/ +0,U,V! + \AAFA U}y
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If the last terms have more noise, then we
wont lose much information by omitting them,
AND we may actually lose a good bit of noise.

That's a perk of dimension reduction.
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Truncated SVD

X=0,U)YV, +0,U,V, +o,UV, +...+ @%




Truncated SVD

X=0,U)YV, +0,U,V, +o,UV, +...+ @%
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The SVD of
Dr. Rappa



Our Fearless Leader
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Let’s start in B&W

Imagine this is

your data matrix.




Let’s start in B&W

Each pixel represents

a number between

0 and 1.
O=black 1=white

The matrix is
160 x 250, and is
called rappa.grey




Take the SVD of the matrix

rappasvd=svd(rappa.grey)
U=rappasvd$u
d=rappasvd$d
Vt=t(rappasvdiv)
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Take the SVD of the matrix

rappasvd=svd(rappa.grey)
U=rappasvd$u
d=rappasvd$d
Vt=t(rappasvdsiv)

D,

rappa.grey num [1:250, 1
© rappasvd Large list (3
d: num [1:160] 114.8 18.7 14.1 1
u: num [1:250, 1:160] -0.107 -0.
v: num [1:160, 1:160] -0.135 -0.

U num [1:250, 1
Vt num [1:160, 1
Values

d num [1:160] 1



rank k approximations

RappaRank_k = U[,1:k] %*% diag(d[1:k]) %*% Vt[1:k, ]
image(RappaRank_k,

col=grey((0:1000)/1000),

main=paste(k, "dimensions"),

xaxt = 'n',

yaxt = 'n')

nxk



rank k approximations

1 dimension 2 dimensions __ . 3 dimensions
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rank k approximations

10 dimensions 20 dimensions 30 dimensions




What about the dropped

components?

RappaRank_n = U[,n:160] %**% diag(d/n:160]) %*% Vt[n:160, |
image(RappaRank_n,
col=grey((0:1000)/1000),
main=paste("last", (160-n),"dimensions"),
xaxt =
yaxt

n b
|n|)
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what did we lose”




What about the dropped

components?

1 dimension ______last 10 dimensions I last 20 dimensions

last 30 dimensions o ast 40dlmenslons _ last 50dlmenslons




What about the dropped

components?

last 90 dimensions last 100 dimensions last 110 dimensions

Mostly noise, as promised!




What’s the point?

» Orthogonal projections built on the theory of maximal
variance don’t tend to lie in the story they tell in the

first few dimensions.

» Additional components can certainly help resolve the
story - adding detail and clarity - but the theme

remalns the same.

» When you’re reducing dimensionality of datasets, use
the visual of 9-dimensional Dr. Rappa as an analogy to

what you're seeing in the projection.



