The Singular Value Decomposition (SVD)

The matrix factorization behind PCA

Singular Value Decomposition (SVD)

For any $n \times p$ matrix **X** with rank=r

There exists orthogonal matrices \mathbf{U}_{nxn} and \mathbf{V}_{pxp} and a diagonal matrix $\mathbf{D}_{rxr} = \mathrm{diag}(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_{2,...}, \boldsymbol{\sigma}_r)$ such that:

$$\mathbf{X} = \mathbf{U} \begin{pmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \mathbf{V}^{T} \quad \text{with} \quad \sigma_{1} \ge \sigma_{2} \ge \dots \ge \sigma_{r} \ge 0$$

SVD, Illustrated

SVD, Illustrated

Skinny SVD

Skinny SVD

Skinny SVD

SVD Fun Facts

- Right singular vectors (rows of \mathbf{V}^{T}) are the (orthonormal) eigenvectors of $\mathbf{X}^{\mathrm{T}}\mathbf{X}$
- Left singular vectors (columns of \mathbf{U}) are the (orthonormal) eigenvectors of $\mathbf{X}\mathbf{X}^{\mathrm{T}}$
- Singular values are the square roots of the eigenvalues.
 (XX^T and X^TX have the same eigenvalues.)

SVD Fun Facts

If X contains centered/standardized

- Right singular vectors (rows of VT) are the data then XTX is the covariance/correlation matrix and the singular vectors are principal components! It's PCA!
- Left singular vectors (columns of **U**) are the (orthonormal) eigenvectors of **XX**^T
- Singular values are the square roots of the eigenvalues.

 (XX^T and X^TX have the same eigenvalues.)

PCA from SVD

PCA from SVD

Slide Flashback

(Factor Analysis Lecture)

Slide Flashback

(PCA Lecture)

Slide Flashback

(Orthogonality Lecture)

Orthogonal Matrix

- An orthogonal matrix is easy to maneuver inside matrix equations, since $V^{-1} = V^{T}$
- For example if U and V are orthogonal, the following equations are equivalent:

$$XV = UD$$

$$X = UDV^{T}$$

$$U^{T}X = DV^{T}$$

$$\mathbf{U}^T \mathbf{X} \mathbf{V} = \mathbf{D}$$

What's the point

- PCA IS the SVD on centered or standardized data.
- Sometimes, practitioners opt for the regular uncentered SVD rather than PCA.
 - True especially in genomics/text/image analysis

Dimension Reduction

Noise Reduction

Resolving a Matrix into Components

$$\text{Let } \mathbf{U}_r = [\mathbf{U}_1 | \mathbf{U}_2 | \dots | \mathbf{U}_r] \quad \text{and} \quad \mathbf{V}_r^T = \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \\ \vdots \\ \mathbf{V}_r^T \end{bmatrix}$$

$$\text{(the left and right singular vectors)}$$

Then,
$$\mathbf{X} = \mathbf{U}_r \mathbf{D}_r \mathbf{V}_r^T = \sum_{i=1}^r \sigma_i \mathbf{U}_i \mathbf{V}_i^T$$

$$= \sigma_1 \mathbf{U}_1 \mathbf{V}_1^T + \sigma_2 \mathbf{U}_2 \mathbf{V}_2^T + \sigma_3 \mathbf{U}_3 \mathbf{V}_3^T + \ldots + \sigma_r \mathbf{U}_r \mathbf{V}_r^T$$

It's 'just' matrix multiplication - sum is visualized next slide

Resolving a Matrix into Components

(sum of rank 1 matrices)

and

Noise Reduction

Think of these as "unit basis directions" for the matrix X.

and

Noise Reduction

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \dots + \boldsymbol{\sigma}_r \mathbf{U}_r \mathbf{V}_r^T$$

Think of these as coordinates that say how much "signal" or information of the matrix X is directed along each basis direction.

The components are ordered by the magnitude of the signal.

$$\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r$$

and

Noise Reduction

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \dots + \boldsymbol{\sigma}_r \mathbf{U}_r \mathbf{V}_r^T$$

Anytime we have signal, we inevitably have some noise.

Our data is typically an imperfect depiction of reality.

and

Noise Reduction

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \dots + \boldsymbol{\sigma}_r \mathbf{U}_r \mathbf{V}_r^T$$

If we assume there is no pattern to the noise – That it is uniformly distributed "in every direction"

Then amount of noise in each of the terms in this sum is the same!

and

Noise Reduction

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \dots + \boldsymbol{\sigma}_r \mathbf{U}_r \mathbf{V}_r^T$$

The amount of signal in each of the terms in this sum is decreasing →

The amount of noise in each of the terms in this sum is the same.

The signal-to-noise ratio is higher in first terms.

Last terms could be mostly noise

and

Noise Reduction

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \dots + \boldsymbol{\sigma}_r \mathbf{V}_r^T \mathbf{V}_r^T$$

If the last terms have more noise, then we won't lose much information by omitting them, AND we may actually lose a good bit of noise. That's a perk of dimension reduction.

Truncated SVD

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \dots + \boldsymbol{\sigma}_k \mathbf{V}_k^T$$

Truncated SVD

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \ldots + \boldsymbol{\sigma}_k \mathbf{V}_k^T$$

The SVD of Dr. Rappa

Our Fearless Leader

Let's start in B&W

Imagine this is your data matrix.

Let's start in B&W

Each pixel represents a number between 0 and 1.

0=black 1=white

The matrix is 160 x 250, and is called **rappa.grey**

Take the SVD of the matrix

```
rappasvd=svd(rappa.grey)
U=rappasvd$u
d=rappasvd$d
Vt=t(rappasvd$v)
```


 $\mathbf{U}_{\mathbf{r}}$

Take the SVD of the matrix

```
rappasvd=svd(rappa.grey)
U=rappasvd$u
d=rappasvd$d
Vt=t(rappasvd$v)
```


 $\mathbf{U}_{\mathbf{r}}$

rappa.grey				num	[1	: 250	,	1
rappasvd				Lar	ge 1	list	((3
d:	num	[1:160]	114.	8 1	8.7	14.	1	1
u:	num	[1:250,	1:16	[08	-0.	107	-(ð.
v:	num	[1:160,	1:16	[08	-0.	135	-(ð.
U				num	[1	: 250	,	1
۷t				num	[1	:160	,	1
Value	s							
d				num	[1	:160]	1

rank k approximations

rank k approximations

rank k approximations

What about the dropped components?

$$\mathbf{X} = \boldsymbol{\sigma}_1 \mathbf{U}_1 \mathbf{V}_1^T + \boldsymbol{\sigma}_2 \mathbf{U}_2 \mathbf{V}_2^T + \boldsymbol{\sigma}_3 \mathbf{U}_3 \mathbf{V}_3^T + \dots + \boldsymbol{\sigma}_r \mathbf{V}_r \mathbf{V}_r^T$$

what did we lose?

What about the dropped components?

What about the dropped components?

What's the point?

- Orthogonal projections built on the theory of maximal variance don't tend to lie in the story they tell in the first few dimensions.
- Additional components can certainly help *resolve* the story adding detail and clarity but the theme remains the same.
- When you're reducing dimensionality of datasets, use the visual of 9-dimensional Dr. Rappa as an analogy to what you're seeing in the projection.