
The Singular Value 
Decomposition (SVD)

The matrix factorization behind PCA



Singular Value Decomposition 
(SVD)

For any n x p matrix X with rank=r 

There exists orthogonal matrices Unxn and Vpxp  
and a diagonal matrix Drxr=diag(𝜎1,𝜎2,…,𝜎r) such that: 
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SVD, Illustrated
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SVD, Illustrated
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Skinny SVD
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Typically r=p 
because our matrix 
should be full rank! 

No Perfect Multicollinearity
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diag(𝜎1,𝜎2,…,𝜎r) 
𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎r >0 
Singular Values
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SVD Fun Facts

‣ Right singular vectors (rows of VT) are the 
(orthonormal) eigenvectors of XTX 

‣ Left singular vectors (columns of U) are the 
(orthonormal) eigenvectors of XXT 

‣ Singular values are the square roots of the eigenvalues. 
(XXT and XTX have the same eigenvalues.)



SVD Fun Facts

‣ Right singular vectors (rows of VT) are the 
(orthonormal) eigenvectors of XTX 

‣ Left singular vectors (columns of U) are the 
(orthonormal) eigenvectors of XXT 

‣ Singular values are the square roots of the eigenvalues. 
(XXT and XTX have the same eigenvalues.)

If X contains centered/standardized 

data then XTX is the 


covariance/correlation matrix 

and the singular vectors


are principal components! It’s PCA!



PCA from SVD 
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PCA from SVD
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Slide Flashback 
(Factor Analysis Lecture)
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Slide Flashback 
(PCA Lecture)

XV=S



Slide Flashback 
(Orthogonality Lecture)



What’s the point

‣ PCA IS the SVD on centered or standardized data. 

‣ Sometimes, practitioners opt for the regular 
uncentered SVD rather than PCA. 
‣ True especially in genomics/text/image analysis  



Dimension Reduction 
⟹ 

Noise Reduction



Resolving a Matrix into 
Components
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It’s ‘just’ matrix multiplication - sum is visualized next slide



Resolving a Matrix into 
Components
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X=σ 1U1V1
T +σ 2U2V2

T +σ 3U3V3
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Think of these as

 “unit basis directions” 


for the matrix X. 

Signal-to-Noise Ratio  
and 

Noise Reduction



Signal-to-Noise Ratio  
and 

Noise Reduction

X=σ 1U1V1
T +σ 2U2V2

T +σ 3U3V3
T +…+σ rUrVr

T

Think of these as coordinates that say how 
much “signal” or information of the matrix X 

is directed along each basis direction.

The components are ordered by 
the magnitude of the signal. 


𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎r



Signal-to-Noise Ratio  
and 

Noise Reduction

X=σ 1U1V1
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Anytime we have signal, we 
inevitably have some noise.


Our data is typically an imperfect 
depiction of reality.



Signal-to-Noise Ratio  
and 

Noise Reduction
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If we assume there is no pattern to the noise - 
That it is uniformly distributed “in every direction” 


Then amount of noise in each of the terms in this 
sum is the same!



Signal-to-Noise Ratio  
and 

Noise Reduction

X=σ 1U1V1
T +σ 2U2V2

T +σ 3U3V3
T +…+σ rUrVr

T

The amount of noise in 
each of the terms in this 

sum is the same.

The amount of signal in 
each of the terms in this 

sum is decreasing ➞ ⇒⇒
The signal-to-noise ratio is higher in first terms.


Last terms could be mostly noise



Signal-to-Noise Ratio  
and 

Noise Reduction

X=σ 1U1V1
T +σ 2U2V2

T +σ 3U3V3
T +…+σ rUrVr

T

If the last terms have more noise, then we 
won’t lose much information by omitting them, 
AND we may actually lose a good bit of noise. 


That’s a perk of dimension reduction.



Truncated SVD
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Truncated SVD
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The SVD of  
Dr. Rappa



Our Fearless Leader



Let’s start in B&W

Imagine this is  
your data matrix. 
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Let’s start in B&W
 

Each pixel represents  
a number between  

0 and 1. 
0=black   1=white 

  
The matrix is  

160 x 250, and is  
called rappa.grey!
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Take the SVD of the matrix

= Ur

Dr VTr
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rank k approximations
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rank k approximations



rank k approximations



What about the dropped 
components?
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what did we lose?



What about the dropped 
components?



What about the dropped 
components?

Mostly noise, as promised!



What’s the point?
‣ Orthogonal projections built on the theory of maximal 

variance don’t tend to lie in the story they tell in the 
first few dimensions.  

‣ Additional components can certainly help resolve the 
story - adding detail and clarity - but the theme 
remains the same. 

‣ When you’re reducing dimensionality of datasets, use 
the visual of 9-dimensional Dr. Rappa as an analogy to 
what you’re seeing in the projection.


