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1 - Spans and Subspaces



 
A linear combination is constructed from a set of 
vectors v1,v2,…,vp by multiplying each vector by a 
constant and adding the result: 

 
c = a1v1 + a2v2 +…+ apv p = aiv i

i=1

n

∑

Linear Combinations 
(Algebraically)
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A linear combination is constructed from a set of 
vectors v1,v2,…,vp by multiplying each vector by a 
constant and adding the result: 

 
alternatively, we could write

c = a1v1 + a2v2 +…+ apv p = aiv i
i=1

n

∑

c = Va    where    V = [v1 | v2 |… | v p ]   and   a =
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Linear Combinations 
(Algebraically)
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 V = [v1 | v2 |… | v p ] 
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a b

Linear Combinations 
(Geometrically)

a+2b
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a+2b

Linear Combinations 
(Geometrically)
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A group of vectors, {v1,v2,…,vn} are linearly 
dependent if there exists corresponding scalars, 
{⍺1,⍺2,…,⍺n} not all equal to zero such that: 

Linear Dependence 
(Algebraically)

α1v1 +α 2v2 +…+α nvn = 0
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A group of vectors, {v1,v2,…,vn} are linearly 
dependent if there exists corresponding scalars,  
{⍺1,⍺2,…,⍺n} not all equal to zero such that: 

For example, if 
 
Then,  

Linear Dependence 
(Algebraically)

α1v1 +α 2v2 +…+α nvn = 0

#PerfectMulticollinearity

2v1 −2v2 +4v3 =0

v1 = v2 −2v3
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A group of vectors, {v1,v2,…,vn} are linearly 
dependent if there exists corresponding scalars, 
{⍺1,⍺2,…,⍺n} not all equal to zero such that: 

{v1,v2,…,vn} are linearly independent if the above 
equation has only the trivial solution (all ⍺i=0)

Linear Dependence 
(Algebraically)

α1v1 +α 2v2 +…+α nvn = 0
#PerfectMulticollinearity
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‣ Two vectors are linearly dependent if they are 
multiples of each other - point in same (or opposite) 
direction 

‣ More than two vectors are linearly dependent if 
at least one is a linear combination of the others

Linear Dependence 
(Geometrically)

1 - Spans and Subspaces



a b

Can I add a third vector that is 
linearly independent of  a and b? 

?NO

Linear Dependence 
(Geometrically)
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a b

Can I add a third vector that is 
linearly independent of  a and b? 

?NO

Linear Dependence 
(Geometrically)
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Vector Span 
(Definition)

‣ The span of a single vector v is the set of all scalar 
multiples of v: 

‣ The span of a collection of vectors V={v1,v2,…,vp} 
is the set of all linear combinations of these vectors: 

span(v) = {αv  for all constants α}

span(V) = {α1v1 +α 2v2 +…+α pv p    for all constants   α1,α 2,…,α p}
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Vector Span 
(Example 1)
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a

span(a)

Vector Span 
(Example 1)
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a b

Vector Span 
(Example 2)
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a b

Vector Span 
(Example 2)

  a+       b
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a b

Vector Span 
(Example 2)

  a+       b# 0
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a b

Vector Span 
(Example 2)

  a+       b0 #
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a b

Vector Span 
(Example 2)

  a+       b# #
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a b

span(a,b)=          !2

Vector Span 
(Example 2)
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What is the span of two linearly independent vectors in     ? !3

The plane (hyperplane) 
 that contains both vectors. 

(A 2-dimensional subspace of      ) !3

Vector Span 
(Example 3)
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Subspace 
(Definition)

‣ A subspace S of      is thought of as a 
“flat” (having no curvature) surface within    .  
It is a collection of vectors which satisfies the 
following conditions:  

‣ The origin (0 vector) is contained in S. 
‣ If x and y are in S then x+y also in S. 

‣ If x is in S then ⍺x is in S for any scalar ⍺.

!n

!n
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‣ In other words, it is an infinite subset of vectors (points) 
from a larger space (    ) that when taken alone, appears 
like     , p<n  

‣ The dimension of the subspace is the minimum number 
of vectors it takes to span the space. (Think: # of axes)

!n

! p

appears  
like R2

Subspace 
(Definition)
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Hyperplane 
(Definition)

‣ A hyperplane is a subspace that has one less 
dimension than its ambient space. 

‣ In 3-dimensional space a hyperplane would be a 2-
dimensional plane.  

‣ In 4-dimensional space, a hyperplane would be a 3-
dimensional plane (helps to keep same picture in 
mind: a “flat” subspace in 4D!)
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‣ A hyperplane cuts the ambient space into two 
parts, one ‘above’ it and one ‘below it’ 

Hyperplane 
(Definition)
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Practice
Is the vector x = 4

3
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Describe the span of one vector in !3

Describe the span of two linearly dependent vectors in !3

Compare the span 1
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Part 2:  
Basis and Coordinates
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‣ A collection of vectors makes a basis for a space (or 
a subspace) if they are linearly independent and 
span the space.

e1

e2

e1 =
1
0

⎛
⎝⎜

⎞
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 and e2 =
0
1

⎛
⎝⎜

⎞
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 are 

      a natural basis for !2

Basis and Coordinates 
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‣ Coordinate pairs are represented in a basis. Each 
coordinate tells you how far to move along each 
basis direction.

a = 2
3

⎛
⎝⎜

⎞
⎠⎟

Basis and Coordinates 

e1

e2
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‣ Coordinate pairs are represented in a basis. Each 
coordinate tells you how far to move along each 
basis direction.

a = 2
3

⎛
⎝⎜

⎞
⎠⎟
= 2e1 + 3e2

Basis and Coordinates 

e1

e2

(Breakdown into parts)
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Change of Basis 

a = 2
3

⎛
⎝⎜

⎞
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= 2e1 + 3e2 a = −2

3
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= −2v1 +3v2

e1
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v1

v2

2e1 +3e2 = −2v1 +3v2
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Practice

1

2
v1 v2

Find the coordinates of the vector x = 4
3
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  in the basis  −1
−1
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 Draw a picture to confirm your answer matches your intuition.

In the following picture, what would be the signs (+/-) of the 
coordinates of the green point in the basis v1,v2{ }?
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Part 3:  
A Change of Basis
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Basis and Coordinates 
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++  

Coordinates

Basis and Coordinates 
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++

Basis Vectors

Bases and Coordinates 
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++

(Think: Axes)

Basis Vectors

Coordinate Space
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++

Point in Space

(vector)
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++

Coordinates give directions 
to a point along basis vectors. 

For any set of data points, the 
basis vectors are the same. We 

compare the points by comparing 
their coordinates.
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++

width

weight

length
(axis 1)

(axis 2)

(axis 3)

length weight width
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++

width

weight

length
(axis 1)

(axis 2)

(axis 3)

length weight width
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++

width

weight

length
(axis 1)

(axis 2)

(axis 3)

length weight width
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++

width

weight

length
(axis 1)

(axis 2)

(axis 3)

length weight width
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width

weight

length
(axis 1)

(axis 2)

(axis 3)

Compared to red point, blue point has: 
Smaller length 
Smaller width 
Larger weight

Let’s change the basis…
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width

weight

length
(axis 1)

(axis 2)

(axis 3)

Let’s change the basis…
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(axis 1)

(axis 2)

(axis 3)

(axis 1)

(axis 2)

(axis 3)

Let’s change the basis…
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~
~
~

~
~
~

(axi
s 1)

(axi
s 2)

(axi
s 3)

Coordinates of the same points in new basis
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(axi
s 1)

(axi
s 2)

(axi
s 3)

Coordinates of the same points in OLD basis

=

=
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(axi
s 1)

(axi
s 2)

(axi
s 3)

These are the new basis vectors… 
But what do they MEAN?
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=

=

(axi
s 1)

(axi
s 2)

(axi
s 3)

These are the new basis vectors… 
But what do they MEAN?
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(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

Each axis is a linear combination  
of original axes

=

=

These are the new basis vectors… 
But what do they MEAN?
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length weight width

(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

=

=

These are the new basis vectors… 
But what do they MEAN?
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length

width

weight

(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

represents ….size?

=

=

These are the new basis vectors… 
But what do they MEAN?
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length weight width

(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

=

=

These are the new basis vectors… 
But what do they MEAN?
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length

width

weight

(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

represents ….weight?

=

=

These are the new basis vectors… 
But what do they MEAN?
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(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

Let’s ignore axis 3 for now…

length

width

weight

length

width

weight

=0

These are the new basis vectors… 
But what do they MEAN?

=

=
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(axi
s 1)

(axi
s 2)

width

weight

length

length

width

weight

length

width

weight

(size) (weight)

=

=
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(axi
s 1)

(axi
s 2)

length
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weight

length
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(size) (weight)

=

=
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(axi
s 1)

(axi
s 2)

length

width

weight

length

width

weight

(size) (weight)

(siz
e)

(weigh
t)

Infer that the red point has: 
 large size  

and  
small weight  

relative to blue point

=
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(axi
s 1)

(axi
s 2)

length

width

weight

length

width

weight

(size) (weight)

(siz
e)

(weigh
t)

Infer that the blue point has: 
 small size  

and  
large weight  

relative to red point

=
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Some Terminology
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(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

length

width

weight

length

width

weight

Factors
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(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

length

width

weight

length

width

weight

Loadings
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(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

length

width

weight

length

width

weight

Scores 
or  

Coordinates

3 - A Change of Basis



Back to Matrix Multiplication

Part 4: 
One Step Further

4 - One Step Further



(axi
s 1)

(axi
s 2)

(axi
s 3)

width

weight

length

length

width

weight

length

width

weight

≈ 0
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(axi

(axi

(axi
wi

wei

len

length
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length
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(axi

(axi

(axi
wi

wei

len

length

width

weight

length

width

weight

! "## $## ! "## $## ! "## $##

X F

Scores
“Latent” 
 FactorsData Matrix

C
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(axi

(axi

(axi
wi

wei

len

length

width

weight

length

width

weight

! "## $## ! "## $## ! "## $##

X F

Scores
“Latent” 
 FactorsData Matrix

C

size
w
eight

Interpretability of latent  
factors is a little subjective,  
but soon you will be more  
comfortable with the idea!
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Part 5:  
A More Complete Example

(Nonnegative) Matrix Factorization for Text
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My cat likes to eat 
dog food. It’s insane. 
He won’t eat tuna, 
but dog food? He’s all 
over it.

Check out this video 
of my dog chasing 
my cat around the 
house! He never 
gets tired! Simon! 
The cat is not a dog 
toy! Dumb dog.

I injured my ankle 
playing football 
yesterday. It is 
bruised and swollen. 
Maybe sprained?

So tired of being 
injured. My ankle just 
won’t get better! I 
sprained it 2 months 
ago!

Document 1 Document 2 Document 3 Document 4

More Complete Example 
(Factors in Text)
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More Complete Example 
(Factors in Text)

The word “dog” appears 3 times in document 2.In this example, our observations are the documents  
and the words are the variables 
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doc1= 1
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cat dog tired injured ankle sprained

More Complete Example 
(Factors in Text)

Basis (Elementary Axes) 
of our 6-dimensional space
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We can approximate this 
matrix using a matrix 

factorization

More Complete Example 
(Factors in Text)
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We can approximate this 
matrix using a matrix 

factorization

More Complete Example 
(Factors in Text)
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How did I get this?  
We’ll talk about it later! 

More Complete Example 
(Factors in Text)
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Each column of B (each document) can be written as a linear 
combination of factors. These linear combinations are the points’ 

coordinate representations in the new basis.

More Complete Example 
(Factors in Text)
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Each column of B (each document) can be written as a linear 
combination of factors. These linear combinations are the points’ 

coordinate representations in the new basis.

B!2 ≈1.7Factor1 + 0.1Factor2
(doc 2)

More Complete Example 
(Factors in Text)
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Each column of B (each document) can be written as a linear 
combination of factors. These linear combinations are the points’ 

coordinate representations in the new basis.

B!2 ≈1.7Factor1 + 0.1Factor2
(doc 2)

More Complete Example 
(Factors in Text)

Conclude: document 2 more 
aligned with factor 1 than factor 2
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B!2 ≈1.7Factor1 + 0.1Factor2
(doc 2)

More Complete Example 
(Factors in Text)

How do we interpret factor 1?
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More Complete Example 
(Factors in Text)

Factor1 = 1
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cat dog tired injured ankle sprained

’pets’

How do we interpret factor 1?
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More Complete Example 
(Factors in Text)

Loadings. 
Allow us to interpret factors. 

‣ Factor 1: pets   
‣ Factor 2: injuries

Scores/Coordinates. 
Allow us to describe data observations 

according to the new factors. 
‣Document 1: about pets   
‣Document 2: about pets 
‣Document 3: about injuries   
‣Document 4: about injuries

5 - A More Complete Example



Why a New Basis?
‣ We want to use a subset of the new basis vectors  
(i.e. new features/variables/axes) to reduce the 
dimensionality of the data and keep patterns 

‣ We hope that the new features (being combinations of 
the old ones) will have some interpretation

5 - A More Complete Example



‣ The interpretation of the new basis vectors (new 
features/variables) is subjective. 

‣ We simply look at the loadings to find the variables 
with the highest loading values (in absolute value) 
and try to interpret their collective meaning.

Interpretation of Features

5 - A More Complete Example



‣ Original basis vectors 
(features/variables) were: 
height, weight, 
head_circumference, 
verbal_score, quant_score, 
household_income, 
house_value. 

‣ Let’s see if we can assign some 
meaning to our new basis 
vectors (features/variables)

height 

weight  

head_circumference  

verbal_score 

quant_score  

household_income 

house_value 
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0.8
0.5
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⎜
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Axis 1

Size?

Interpretation of Features
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height 

weight  

head_circumference  

verbal_score 

quant_score  

household_income 

house_value 

0
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Axis 2

ability?

Interpretation of Features

‣ Original basis vectors 
(features/variables) were: 
height, weight, 
head_circumference, 
verbal_score, quant_score, 
household_income, 
house_value. 

‣ Let’s see if we can assign some 
meaning to our new basis 
vectors (features/variables)
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Major Ideas from Section
‣ linear combinations geometrically 
‣ linear (in)dependence geometrically 
‣ vector span 
‣ subspace 
‣ dimension of subspace 
‣ hyperplane 
‣ basis vectors 
‣ coordinates in different bases 
‣ (generic) factor analysis 
‣ loadings 
‣ scores/coordinates
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