Introduction to

Vector Space Models

Vector span, Subspaces, and Basis Vectors



Part 1:

Vector Span and Subspaces



Linear Combinations
(Algebraically)

A linear combination is constructed from a set of

vectors vi,va,...,vp by multiplying each vector by a

constant and adding the result:

n
C=aV, +@V, +...+av, =Y ay,
=1



Linear Combinations
(Algebraically)

A linear combination is constructed from a set of

vectors vi,va,...,vp by multiplying each vector by a

constant and adding the result:

n
c=av, +ayv,+..+av, =Y ay,
=1

alternatively, we could write ( a, \
a
c=Va where V=[v Iv,l..Iv ] and a=|
a




1 - Spans and Subspaces



V=[vlv,l..lv ]




1 - Spans and Subspaces



V=[vlv,l..lv ]




Linear Combinations
(Geometrically)
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Linear Combinations
(Geometrically)
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Linear Dependence
(Algebraically)

00000
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ov,+o,v,+...+av =0



Linear Dependence
(Algebraically)

00000

ov,+o,v,+...+av =0

For example, if 2v. —2v_+4v =0

Then, V,=V,—2V,
’ #PerfectMulticollinearity



Linear Dependence
(Algebraically)

A group of vectors, {viv2. vn} are linearly

dependent if there exists corresponding scalars,

{or,02,.an} not all equal to zero such that:

ov,+o,v,+...+av =0
#Perfect Multicollinearity

.....

equation has only the trivial solution (all a;=0)



Linear Dependence
(Geometrically)

» T'wo vectors are linearly dependent if they are

multiples of each other - point in same (or opposite)

direction

» More than two vectors are linearly dependent if

at least one is a linear combination of the others



Linear Dependence
(Geometrically)
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Can I add a third vector that is
linearly 2ndependent of a and b?
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Linear Dependence
(Geometrically)

Jen®
““
.

‘

sssssssssssssssssss



Vector Span
(Definition)

» The span of a single vector v is the set of all scalar

multiples of v:

span(v)={av for all constants o}

» The span of a collection of vectors V={vi,va,...,vp}

1s the set of all linear combinations of these vectors:

span(V)={av,+o,v, +...+o v forall constants «,,c,,....a,}




Vector Span
(Example 1)
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Vector Span
(Example 1)

/span(a)
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Vector Span
(Example 2)
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Vector Span
(Example 2)
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1 - Spans and Subspaces




Vector Span

Example

1 - Spans and Subspaces
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Vector Span
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1 - Spans and Subspaces & .- " - .-



Vector Span
(Example 3)

What is the span of two linearly independent vectors in R>?

The plane (hyperplane)
that contains both vectors.

(A 2-dimensional subspace of R”)




Subspace
(Definition)

» A subspace S of R" is thought of as a

“flat” (having no curvature) surface within R".
It is a collection of vectors which satisfies the
following conditions:

» The origin (0 vector) is contained in S.

» If x and y are in S then x+y also in S.

» If x is in S then ox is in S for any scalar a.



Subspace
(Definition)

» In other words, it is an infinite subset of vectors (points)
from a larger space (R") that when taken alone, appears
like R” p<n

appears
Lilkee K2

» The dimension of the subspace is the minimum number

of vectors it takes to span the space. (Think: # of axes)



Hyperplane
(Definition)

» A hyperplane is a subspace that has one less

dimension than its ambient space.

» In 3-dimensional space a hyperplane would be a 2-

dimensional plane.

» In 4-dimensional space, a hyperplane would be a 3-
dimensional plane (helps to keep same picture in
mind: a “flat” subspace in 4D!)



Hyperplane
(Definition)

» A hyperplane cuts the ambient space into two

parts, one ‘above’ it and one ‘below it’




Practice

Isthevectorxz( i ]inthe span<( I ]> ?

Describe the span of one vector in R’

Describe the span of two linearly dependent vectors in R’

Compare the span - ( : j > to the span < (

What is the dimension of the span<( 1 ],( ; j >




Part 2:

Basis and Coordinates



Basis and Coordinates

» A collection of vectors makes a basis for a space (or

a subspace) if they are linearly independent and

span the space.

elz( (1) ]ande2=[ (1) )are

a natural basis for R?



Basis and Coordinates

» Coordinate pairs are represented in a basis. Each
coordinate tells you how far to move along each

basis direction.




Basis and Coordinates

» Coordinate pairs are represented in a basis. Each

<coordinaté tells you how far to move along each

(Breakdown into parts)




Change of Basis

=

Ze1 +3e2 = —-2v_ +3v,



Practice

In the following picture, what would be the signs (+/-) of the

coordinates of the green point in the basis {V1 ,V, }?

Find the coordinates of the vector x = ( ;L ) in the basis - (

Draw a picture to confirm your answer matches your intuition.

2 - Coordinates and Bases
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Part 3:
A Change of Basis



Basis and Coordinates



Basis and Coordinates

o) &) - o) - ()

Coordinates




Bases and Coordinates

|
Basis Vectors




Basis Vectors

(Think: Axes)

T~

Coordinate Space

3 - A Change of Basis



Poink Spate

(vector)



/1 0\
O :

Coordinates give directions
to a point along basis vectors.

For any set of data points, the
basis vectors are the same. We
compare the points by comparing

their coordinates.




length
(axis 1)

weight
(axis 2)

3 - A Change of Basis



length
(axis 1)

weight
(axis 2)

3 - A Change of Basis



length
(axis 1)

weight
(axis 2)

3 - A Change of Basis



length
(axis 1)

weight
(axis 2)

3 - A Change of Basis



Compared to red point, blue point has:

Smaller length
(s ) Smaller width

Larger weight

length
(axis 1)

weight
(axis 2)

Let’s change the basis...

3 - A Change of Basis



widbh
(axis 3)

length
(axis 1)

weight
(axis 2)

Let’s change the basis...

3 - A Change of Basis



(axis 3)

(axis 2)

Let’s change the basis...

3 - A Change of Basis



) Coordinates of the same points in new basis

3 - A Change of Basis



Y
o
~ . . . X11
%11 (axisy) + Xp1 (axisp) + ¥31 (axisz) = | xo1
X31

T

X12
® %1, (axisy) + X (axisp) + X3 (axisz) = (xzz>

X32

|
D) Coordinates of the same points in OLD basis

o+ Z

3 - A Change of Basis



These are the new basis vectors...
But what do they MEAN?

X1 (axisl) + Xo! (axisz) + X371 (aXiS3)

® 3., (axisy) + &2 (axisy) + F3p (axis3)



These are the new basis vectors...
But what do they MEAN?

X11
%11 (axisy) + Xp1 (axisp) + %31 (axisz) = <x21
X31
X12
%17 (axisy) + X2 (axisy) + X3p (axis3) = | *2
X32
o o

|



These are the new basis vectors...
But what do they MEAN?

X11
widkh X11 (axisl) + X291 (axisz) + X371 (axis;:,) = (x21)
-) X31
a8 ?
(& X12
X1p (axisy) + Xop (axisp) + X3 (axisz) = | x2
X32

) Each axis 1s a linear combination
weigh& .« e
of original axes



These are the new basis vectors...
But what do they MEAN?

widkh X1 (axisl) + X091 (axisz) + X371 (axi53) — <x21)
X31

X12
X1y (axisy) 4 X (axisy) + X3p (axis3) = | x2
X32

e length

1
axisq :@(0) —0.
| 0

length weight widkh

weight



These are the new basis vectors...
But what do they MEAN?

X11
widkh X1 (axisl) + X091 (axisz) + X371 (axi53) — <x21)
X31
X12
X1y (axisy) 4 X (axisy) + X3p (axis3) = | x2
X32

represem%s o Slze?



These are the new basis vectors...
But what do they MEAN?

widkh X11 (axisl) + Xos (axisz) + X371 (axi53) — <x21)

X31

X12
%17 (axisy) + %25 (axisy j + X3p (axis3) = | x2

X32

~af) o

length weight widkh




These are the new basis vectors...
But what do they MEAN?

X11
widkh X11 (axisl) + Xos (axisz) + X371 (axi53) — <x21)
X31
» X12
%17 (axisy) + %25 (axisy ) + X3 (axisz) = | x2
X32

weight

represav\%s eawelght?



These are the new basis vectors...
But what do they MEAN?

X11
widkh X11 (axisl) + X1 (aX182) + &3 (axng,) — (le)
2) o
kod’:‘ﬁ X12
X1p (axisy) + %22 (axisp) + 2 (axisz) = | x2
X32
=0
e M)
Gl
........................... LQV\SHA
0.89 \ "o 0.27 \ lenoth
. axis; = | —0.09 |weioht axis, = | 0.89 | weight
taht
= 0.45 | widtw —0.35/ widtn
o Y

Let’s ignore axis 3 for now...



0.89 \ enat 0.27 \ length
axisl — | —0.09 |weight axi52 — 0.89 weight
0.45 /| width —0.35/ width

widkh

Y
o

length
~ . ~ . x11
X11 (aX181) + X721 (aX182) = | X791
. X31
wel L\E = - ~ : T
J %17 (axisy) + %2 (axisy) = [ x2
X32

3 - A Change of Basis



0.89 length
axis; = | —0.09 |weiokt

(size)\ 045 / wides

%11 (axisy) + %21 (axisp) =

%17 (axisy) + %22 (axisy) =

X11
X21
X31

X12
X22
X32

axi52 —

(M@,E,g h&) —0.35/ width

|

0.27
0.89

length

weight



0.89 length 0.27 length
axis; = (0.09) weight axis; = | 0.89 ) weight

(si;a@.) 0.45 / width (Maggh&) —0.35/ widik

@axisl) @axisz) _ (%)
Infer that the red point has:

o large size
\O‘té&gﬁ)

and

small weight

relative to blue point



0.89 length 0.27 length
axis; = (0.09) weight axisy = ( 0.89 )weégh&

(se;&,) 0.45 ] width (MQESM) —0.35/ widik

, : X12
@axisl) - X Y(axisp) = (xzz)
. X32

Infer that the blue point has:

oY) small size
Ca

and

large weight

relative to red point



Some Terminology



0.89 length 0.27 length
axisl — —0.09 weiqght axi52 = 0.89 weight
0.45 ] width —0.35/ width

widkh

Factors

) = X1 (axisl) + Xoq1 (axisz) + X31 (aXiS3)

) = X1 (axisl) + X7o (aXiSZ) + X3» (aXiS3)

3 - A Change of Basis



) = X11 (axisl) + Xoq1 (axisz) + X31 (aXiS3)

(xzz) = X172 (axisl) + X979 (axisz) + X3» (axis;»,)

3 - A Change of Basis



0.89 length 0.27 length
axis; = | —0.09 |weiokt axisy = | 0.89 | weignt
0.45 | width —0.35/ width

widkh

Scores

'&\) or

Coordinates

(x21) == %11 {axisy) + Xp1 (axisp) + X31 (axis3)
X31

X12 : 1 ]
(xzz) = Xqp laxisy) 4 Xpp faxisy) +- X3 (axis3)
X32

3 - A Change of Basis



Part 4:
One Step Further

Back to Matrix Multiplication



0.89 \ enat 0.27 \ length
axisl — | —0.09 |weight axi52 — 0.89 weight
0.45 /| width —0.35/ width

widkh

x21> = X11 (axisl) + X1 (axisz) + 431 (axis;;)

) = X1p (axis1) + X22 (axisp) + X (axis3)

= ()

4 - One Step Further



0.89 \ enat 0.27 \ length
axi51 — | —0.09 |weight axi52 — 0.89 weight
0.45 /| width —0.35/ width

X11
(x21) ~ %11 (axisi) + X1 (axisy)
X31

X12
(xzz) 2 X192 (axisl) + X279 (aX182)
X32

4 - One Step Further



axi51 — | —0.09 |weight axi52 — 0.89 weight

0.89 \ ‘enath 0.27 \ length
0.45 )wmh —0.35/ widik

SN————

. 0.89 0.27
~ X11|—0.09 | + %1 [ 0.89
0.45 —0.35

_ /089 (027
X12 [ —0.09 | T X2 0.89
0.45 ~0.35

X11
X21
X31
X12
2)
X32

Q

4 - One Step Further



0.89 \ enat 0.27 \ length
axisl — | —0.09 |weight axi52 — 0.89 weight
0.45 /| width —0.35/ width

X

X11
X21
X31

0.89 0.27 fll
—0.09 0.89 |

045 —0.35) *21

~ [ 089 027\ %1,
—0.09 0.89 | ..

045 —0.35) *22

R a A
W N =
N NN
v

4 - One Step Further



0.89 \ enat 0.27 \ length
axisl — | —0.09 |weight axi52 — 0.89 weight
0.45 /| width —0.35/ width

“Latent”
xn) ( 0.89 0.27 ) %11 Data Matrix Factors Scores

_ X11 X12 0.89 0.27 - ~
X X
X21 = | xy; X —0.09 0.89 (}1 ,.12)
Y31 X 045 —035) ‘21 t2

~ [ 089 027\ %1y
—~0.09 0.89 | -~ I ’ ) M T
045 —0.35 X22 X F C

Q

= = =
W N =
N NN
\—/




0.89 LQV\SH\
i = (_0.09)

0.27 length

—0.35 widkh

widkh

0.45

Interpretability of Latent
factors is a Little subjective,
but scomn you will be more
comfortable with the idea!

“Latent”
Data Matrix Factors Scores
X1 X12 ®. LN s %
= (le x22) ~ ( g‘::‘ & (f; fZ)
X31 X32 6 & 'b%‘
X F C



Part 5:
A More Complete Example

(Nonnegative) Matrix Factorization for Text



More Complete Example
(Factors in Text)

Document 1

My cat likes to eat
dog food. It's insane.
He won't eat tuna,
but dog food? He’s all
over it.

5 - A More Complete Example

Document 2

Check out this video
of my dog chasing
my cat around the
house! He never
gets tired! Simon!

The cat is not a dog
toy! Dumb dog.

Document 3

| injured my ankle
playing football
yesterday. It is

bruised and swollen.

Maybe sprained?

Document 4

So tired of being
injured. My ankle just
won't get better! |
sprained it 2 months
ago!




More Complete Example
(Factors in Text)

docl doc2 doc3 dock

“cat” 1 2 0 0
“dog” 2 (3] 0o o

B “tired” 0 1 0 1
- “injured” 0 0 1 1
“ankle” 0 0 1 1
“sprained” \ 0 0 1 1

In this example, our observations are the documents

and the words are the variables



More Complete Example
(Factors in Text)

docl
“Cdt” 1

“dog”
“tired”
“injured”
“ankle”
“sprained” \

QO ONDN

)

docl =1

5 - A More Complete Example

doc2 doc3 doc4d

2

OO~ W

cak

oS O O O O =

0

_ == OO

+2

c oo ~o i

-

dog

0

_ = O

+0

Ba51s (Elementary Axes)

+0

\

o —oc ook (il

0

+0

\

O~ O O O O .;;jfj;

J

+0

c o oo

0

1)

tired injured ankle spramad

of our 6-dimensional space

! )



More Complete Example
(Factors in Text)

docl doc2 doc3 docd

“cat” / 1 2 0 0 \ ) )
“dog” 2 3 0 0 | We can approximate this
B_ “tired” 0 1 0 1 13 . 15
T ccinjuredn O 0 1 1 ma I'l1X USIIlg a ma I'l1X
“ankle” o0 1 1 factorization
“sprained” \ 0 0 1 1 )
Factorl Factor2
“cat” 1.0 0
“dog” 1.6 0 docl doc2 doc3 docd
B - “tired” 0.4 0.4 1.0 1.7 0 0.0
"~ “injured” 0 0.8 0 01 09 11
“ankle” 0 0.8

“sprained” 0 0.8



More Complete Example
(Factors in Text)

docl doc2 doc3 dock

“cat” 1 2 0 0 \
“dog” 2 3 0 0
B_ “tired” 0 1 0 1
“injured” 0 0 1 1
“ankle” 0 0 1 1
“sprained” \ 0 0 1 1 /
docl doc2 doc3 doch
“cat” 1 1.7 0 0
“dog” 1.6 2.7 0 0
B~ “tired” 04 0.72 036 0.44
"~ “injured” 0 0 0.72 0.88
“ankle” 0 0 0.72 0.88
0.72 0.88

“sprained” \ 0 0

We car@proximéte this

matrix using a matrix

factorization



More Complete Example
(Factors in Text)

docl doc2 doc3 docd

“~qt? / 1 2 0 0 \
“dog” 2 3 0 0 How did I get this?
B — “tired” 0 1 0 1 .
~snured | 0 0 1 1 | We’ll talk about it later!
“ankle” 0 0 1 1
“sprained” \ 0 0 1 1 /
Factorl Factor2
“Cﬂt” 10 0
“dog” 1.6 0 docl doc2 doc3 doc4
B~ “tired” 0.4 0.4 1.0 1.7 0 0.0
"~ “injured” 0 0.8 0 0.1 09 1.1
“ankle” 0 0.8

“sprained” 0 0.8



More Complete Example
(Factors in Text)

Factorl Factor2

“cat” 1.0 0

“dog” 1.6 0 docl ocZ doc3 docd
B~ “tired” 0.4 0.4 (1.0 0 0.0)
= “injured” 0 0.8 0 01 09 11

“ankle” 0 0.8

“sprained” 0 0.8

Each column of B (each document) can be written as a linear
combination of factors. These linear combinations are the points’

coordinate representations in the new basis.



More Complete Example
(Factors in Text)

Factorl Factor2

“cat” 1.0 0

“dog” 1.6 0 docl doc2 doc3 doc4
B~ “tired” 0.4 0.4 (1.0 1.7 0 0.0)
"~ “injured” 0 0.8 0 01 09 11

“ankle” 0 0.8

“sprained” 0 0.8

Each column of B (each document) can be written as a linear
combination of factors. These linear combinations are the points’

coordinate representations in the new basis.

B, z@F actor, —I—F actor,

(doc 2)



More Complete Example
(Factors in Text)

Factorl Factor2

“cat” 1.0 0

“dog” 1.6 0 docl doc2 doc3 doc4
B~ “tired” 0.4 0.4 (1.0 1.7 0 0.0)
"~ “injured” 0 0.8 0 01 09 11

“ankle” 0 0.8

“sprained” 0 0.8

Each column of B (each document) can be written as a linear
combination of factors. These linear combinations are the points’

coordinate representations in the new basis.

, Conclude: document 2 more
B, z@F actor, +F actor,

aligned with factor 1 than factor 2
(doc 2

5 - A More Complete Example



More Complete Example
(Factors in Text)

“cat”
“dog”
“tired”
“injured”
“ankle”
“sprained”

Factorl Factor2

1.0

1.6

0.4
0
0
0

0
0
0.4
0.8
0.8
0.8

B , =1.7Factor, +0.1Factor,

(doc 2)

docl doc2 doc3 docd

1.0 1.7 0 0.0
0 0.1 09 1.1

How do we interpret factor 17



More Complete Example
(Factors in Text)

“cat”
“dog”
“tired”
“injured”
“ankle”
“sprained”

F actorl@

oSO O O O =

¢
&
—+

Factor
i
1.6

0.4

O .
O r
\o/

1 Factor2

0
0
0.4
0.8
0.8
0.8

docl doc2 doc3 docd

1.0 1.7 0 0.0
0 0.1 09 1.1

How do we interpret factor 17

@3

/

N
C%OOOOHO

\

+0

(0 ) |

0 0 0

0 0 0 / /

X X X p@.%s
+0 +0

1 0 0

0 1 0

\0) \0) \1)

injured ankle sprained



More Complete Example
(Factors in Text)

Factorl Factor2

“Cﬂt” 10 0
“dog” 1.6 0 docl doc2 doc3 doc4
B ~ “tired” 0.4 04 1.0 1.7 0 0.0
= “injured” 0 0.8 0 01 09 1.1
“ankle” 0 0.8 Scores/Coordinates.
“sprained” 0 0.8

Allow us to describe data observations
Loadmgs. according to the new factors.

Allow us to interpret factors. » Document 1: about pets

» Factor 1: pets » Document 2: about pets

» Factor 2: injuries » Document 3: about injuries

» Document 4: about injuries



Why a New Basis?

» We want to use

a subset of the new basis vectors

(i.e. new features/variables/axes) to reduce the

dimensionality

» We hope that t

of the data and keep patterns

he new features (being combinations of

the old ones) wil!

| have some interpretation



Interpretation of Features

» The interpretation of the new basis vectors (new

features/variables) is subjective.

» We simply look at the loadings to find the variables
with the highest loading values (in absolute value)

and try to interpret their collective meaning.



Interpretation of Features

» Original basis vectors
(features/variables) were:
height, weight,
head circumference,
verbal score, quant score,
household income,

house wvalue.

» Let’s see if we can assign some
meaning to our new basis
vectors (features/variables)

height

weight

head circumference
verbal score

quant score
household income

house value

Axis 1
(07
0.8
0.5

o O O O

Stze?



Interpretation of Features

» Original basis vectors Axis 2
(features/variables) were: hez'ght( 0 A
height, weight,

’ ’ weight 0

head circumference,
verbal score, quant Sscore, head circumference 0

household income, verbal score| ().]
house_ value.

quant_score| ()8

» Let’s see if we can assign some .
| &1 household income| ()2
meaning to our new basis

vectors (features/variables) house_ value\ 0.1 )

&b&ti&v?



Interpretation of Features

» Original basis vectors Axis 3
(features/variables) were: hez'ght( 0 A
height, weight,

- ght
head_ circumference, wety 0
verbal score, quant Sscore, head circumference 0

household income, verbal score| ().]

house wvalue.
quant score 03

» Let’s see if we can assign some .
| &1 household_ income| () .9
meaning to our new basis

vectors (features/variables) house_ value\ 0.7 )

affluence?



Major Ideas from Section

» linear combinations geometrically

» linear (in)dependence geometrically
» vector span

» subspace

» dimension of subspace

» hyperplane

» basis vectors

» coordinates in different bases

» (generic) factor analysis

» loadings

» scores/coordinates



