Introduction to Vector Space Models - Worksheet

Part One

- 1. Is the vector $\mathbf{x} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ in the span $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$?

 Mo. X is not a scalar multiple of $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- 2. Is the vector $\mathbf{x} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ in the $span \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$?

 Yes, Since $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ can be written as a linear combination of these vectors, it is in the span.
- 3. Describe the span of one vector in \mathbb{R}^3 .

a line through the origina

4. Describe the span of two linearly *independent* vectors in \mathbb{R}^3 .

5. Describe the span of two linearly dependent vectors in \mathbb{R}^3 .

a line through the origin

- 6. Compare the $span\left\{ \begin{pmatrix} 1\\1 \end{pmatrix} \right\}$ to the $span\left\{ \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2 \end{pmatrix} \right\}$ they are exactly the same space! (a line)
- 7. What is the **dimension** of a subspace?

the minimum number of vectors it takes to span the space.

8. How would you describe a hyperplane? a 'flat' surface/subspace which cuts the ambient space in half.

Part Two

1. What are the coordinates of the vector $\mathbf{x} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ in the basis $\left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$? Draw a picture to make sure your answer lines up with intuition.

2. In the following picture what would be the signs (+/-) of the coordinates of the green point in the basis $\{v_1, v_2\}$? Pick another point at random and answer the same question for that point.

Part Three

- 1. Interpret the following Nonnegative Factor Output for a small collection of text documents, answering the following questions:
 - a. What meaning (theme/topic) would you give to each of the three factors?

0

0

(1.6)

List of Key Words.

linear combination geometrically linear (in)dependence geometrically vector span subspace dimension of subspace hyperplane

"phelps"

basis vectors
coordinates in different bases
(generic) factor analysis
loadings
scores/coordinates