Singular Value Decomposition - Worksheet

Give an explanation for True/False

Give	un explunution for TruelFutse
1.	(<i>True/False</i> .) The matrix D in the singular value decomposition is diagonal and contains the same eigenvalues that are output in PCA. It contains the square roots of those eigenvalues, which are called singular values.
2.	(<i>True/False.</i>) Principal Component Analysis involves the SVD of a data matrix which has been centered or standardized.
3.	($\mathit{True/False}$.) The matrices U and V^T in the singular value decomposition are orthogonal, and that means their inverse is equal to their transpose.
4.	(<i>True/False</i> .) When we omit principal components with small eigenvalues, the information we lose has a larger signal-to-noise ratio than the information we keep. **smaller** signal-to-noise ratio. They are mostly noise.
BONUS:	(<i>True/False.</i>) The default factors displayed in SAS's proc factor results window are the rows of the matrix product DV^T where $X = UDV^T$ is the SVD of your standardized data matrix X .
	Facts:
	(a) proc factor uses correlation PCA by default
	(b) the factors that are displayed in the output are the principal components (rows of \mathbf{V}^{T}) only each is scaled by the square root of it's eigenvalue.
	(c) the matrix D contains the square roots of those eigenvalues
	(d) multiplication by a diagonal matrix on the left will scale the rows of a matrix by the corresponding diagonal elements.
	$(e) \longrightarrow \Box$
	List of Key Words/Phrases.
	singular value decomposition signal-to-noise ratio PCA and SVD relationship