Principal Components Analysis - Worksheet

Part One

- 1. Suppose we have a dataset with 8 variables and we use *standardized* data (i.e. correlation PCA). What is the total amount of variance in our data?
- 2. Suppose I have a dataset with 3 variables and the eigenvalues of the covariance matrix are

$$\lambda_1 = 3, \lambda_2 = 2, \lambda_3 = 1.$$

- a. What proportion of variance is explained by the first principal component?
- b. What is the variance of the second principal component?
- c. What proportion of variance is captured by using both the first and second principal components?

3. The following output is produced in SAS after running PCA on the iris dataset:

Eigenvalues of the Correlation Matrix							
	Eigenvalue	Difference	Proportion	Cumulative			
1	2.91849782	2.00446735	0.7296	0.7296			
2	0.91403047	0.76727360	0.2285	0.9581			
3	0.14675688	0.12604204	0.0367	0.9948			
4	0.02071484		0.0052	1.0000			

Eigenvectors							
	Prin1	Prin2	Prin3	Prin4			
Sepal_Length	0.521066	0.377418	719566	261286			
Sepal_Width	269347	0.923296	0.244382	0.123510			
Petal_Length	0.580413	0.024492	0.142126	0.801449			
Petal_Width	0.564857	0.066942	0.634273	523597			

- How much variance in the data is captured by a projection onto the span of the first three principal components?
- Which variable is most closely associated with PC 2?
- Observations that have larger scores on PC3 are somewhat likely to have larger/smaller than average sepal lengths? (circle one)
- If you had to reduce the dimensions of this data down to 2 variables, which variables would you choose?
- What is the total amount of variance for this example? How do you know?

List of Key Words/Phrases.

eigenvalue orthogonal projection onto PCs

eigenvector PCA loadings

principal components PCA coordinates

directional variance biplot

proportion of variance zero eigenvalues

correlation vs covariance PCA small eigenvalues