Worksheet - Lecture 15 Norms and Distance Measures

1. Let
$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ -4 \\ -2 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$.

- a. Determine the Euclidean distance between **u** and **v**.
- b. Find a vector of unit length in the direction of **u**.
- c. Find the 1- and ∞ -norms of **u** and **v**.
- d. Find the Manhattan distance between **u** and **v**.
- 2. What is the 2-norm of a unit vector?
- 3. Describe in words what happens when you take the inner product of a vector with itself, $\mathbf{x}^T \mathbf{x}$. How does this computation relate to the 2-norm of \mathbf{x} , $\|\mathbf{x}\|_2$?
- 4. (True/False) When we have a system of equations for regression analysis,

$$X\beta = y$$

which has no exact solutions, the goal of the Least-Squares method is to find a solution $\widehat{\boldsymbol{\beta}}$ such that

$$\|\mathbf{X}\widehat{\boldsymbol{\beta}} - \mathbf{y}\|_2^2$$

is minimized.

(In case the notation looks confusing, that is the two-norm squared, $\|\mathbf{x}\|_2^2 = (\|\mathbf{x}\|_2)^2$.)