Worksheet - Lecture 3 Matrix Arithmetic

1. On a coordinate plane, draw the vectors $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and then draw $\mathbf{c} = \mathbf{a} + \mathbf{b}$. Make dotted lines which illustrate how the point/vector \mathbf{c} can be reached by connecting the vectors \mathbf{a} and \mathbf{b} "tail-to-head".

2. Use the following vectors to answer the questions:

$$\mathbf{v} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}$$
 $\mathbf{u} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ $\mathbf{x} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ $\mathbf{y} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix}$ $\mathbf{e} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

a. Compute the following linear combinations, if possible:

$$2u + 3v =$$

$$\mathbf{u} + \mathbf{e} =$$

$$\mathbf{x} - 2\mathbf{y} + \mathbf{e} =$$

$$-2u - v + e =$$

b. Compute the following inner products, if possible:

$$\mathbf{u}^T \mathbf{v} =$$

$$\mathbf{x}^T\mathbf{u} =$$

$$\mathbf{v}^T \mathbf{x} =$$

$$\mathbf{x}^T\mathbf{x} =$$

$$\mathbf{x}^T \mathbf{e} =$$

$$\mathbf{e}^T \mathbf{v} =$$

$$\mathbf{e}^T \mathbf{y} =$$

$$\mathbf{y}^T \mathbf{e} =$$

- c. What happens when you multiply a vector by \mathbf{e} ?
- d. What happens when you take the inner product of a vector with itself (as in $\mathbf{x}^T \mathbf{x}$)?