Matrix Arithmetic

(Multidimensional Math)

Inner products and Matrix-Vector Multiplication

Matrix Multiplication
Inner product and linear combination viewpoint

Vector Multiplication
The Outer Product

Matrix Addition/Subtraction

- Two matrices/vectors can be added/subtracted if and only if they have the same size
- ▶ Then simply add/subtract corresponding elements

Matrix Addition/Subtraction

Example: Matrix Addition/Subtraction

a) Compute A + B, if possible:

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 4 & 5 & 6 \\ -1 & 0 & 4 \\ 3 & 4 & 3 \end{pmatrix}$$

b) Compute A - H, if possible:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \qquad \mathbf{H} = \begin{pmatrix} 6 & 5 & 10 \\ 0.1 & 0.5 & 0.9 \end{pmatrix}$$

Scalar Multiplication

$$(\alpha \mathbf{M})_{ij} = \alpha \mathbf{M}_{ij}$$

(Element-wise)

Geometric Look

Vector addition and scalar multiplication

Points <—> Vectors

Vectors have both direction and magnitude

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Direction arrow points from origin to the coordinate *point*

Magnitude is the length of that arrow #pythagoras

Scalar Multiplication (Geometrically)

Vector Addition (Geometrically)

Example: Centering the data

Example: Centering the data

Example: Centering the data

Linear Combinations

Linear Combinations

A linear combination of vectors is a just weighted sum:

Elementary Linear Combinations

The simplest linear combination might involve columns of the identity matrix (elementary vectors):

$$\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

• Picture this linear combination as a "breakdown into parts" where the parts give directions along the 3 coordinate axes.

Linear Combinations (Geometrically)

Linear Combinations (Geometrically)

$$\begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix} \in 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Example: Linear Combination of Matrices

Write the matrix $\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$ as a linear combination of the following matrices:

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Solution:

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix} = 1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + 3 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 4 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Notation: Column vs. Row Vectors

- Throughout this course, unless otherwise specified, all vectors are assumed to be columns.
- ▶ Simplifies notation because if x is a column vector:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

then we can automatically assume that \mathbf{x}^T is a row vector:

$$\mathbf{x}^T = (x_1 \ x_2 \ \dots \ x_n)$$

Vector Inner Product

The vector inner product is the multiplication of a row vector times a column vector.

▶ It is known across broader sciences as the 'dot product'.

The result of this product is a scalar.

Inner Product (row x column)

Inner Product (row x column)

a and **b** must have the same number of elements.

Examples: Inner Product

Let

$$\mathbf{x} = \begin{pmatrix} -1\\2\\4\\0 \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} 3\\5\\1\\7 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} -3\\-2\\5\\3\\-2 \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} 2\\-1\\3\\-3\\-2 \end{pmatrix}$$

$$\mathbf{a}. \mathbf{x}^T \mathbf{y}$$

Examples: Inner Product

Let

$$\mathbf{x} = \begin{pmatrix} -1\\2\\4\\0 \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} 3\\5\\1\\7 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} -3\\-2\\5\\3\\-2 \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} 2\\-1\\3\\-3\\-2 \end{pmatrix}$$

$$\mathbf{b}. \mathbf{x}^T \mathbf{v}$$

$$\mathbf{c}. \mathbf{v}^T \mathbf{u}$$

Check your Understanding

Let

$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} \quad \mathbf{e} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad \mathbf{p} = \begin{pmatrix} 0.5 \\ 0.1 \\ 0.2 \\ 0 \\ 0.2 \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} 10 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} \quad \mathbf{s} = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}$$

$$\mathbf{a}. \mathbf{v}^T \mathbf{e}$$

$$\mathbf{d}. \mathbf{p}^T \mathbf{u}$$

$$\mathbf{b}. \ \mathbf{e}^T \mathbf{v}$$

$$\mathbf{e}. \mathbf{v}^T \mathbf{v}$$

c.
$$\mathbf{v}^T \mathbf{s}$$

Check your Understanding Solution

Let

$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} \quad \mathbf{e} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad \mathbf{p} = \begin{pmatrix} 0.5 \\ 0.1 \\ 0.2 \\ 0 \\ 0.2 \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} 10 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} \quad \mathbf{s} = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}$$

a.
$$v^{T}e = 15$$

d.
$$p^{T}u = 6.2$$

b.
$$e^{T}v = 15$$

e.
$${\bf v}^T {\bf v} = {\bf 55}$$

c.
$$\mathbf{v}^T \mathbf{s} = not \ possible$$

Matrix-Vector Multiplication Inner Product View (I-P View)

Example: Matrix-Vector Products

Let

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \\ 5 & 1 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad \mathbf{q} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

Determine whether the following matrix-vector products are possible. When possible, compute the product.

a. Aq

b. Av

Matrix-Vector Multiplication Linear Combination View (L-C View)

Matrix-Vector Multiplication (L-C view)

Matrix-Vector Multiplication (L-C view)

Example: Linear Combination View

$$\mathbf{Av} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2(3) + 3(2) \\ -1(3) + 4(2) \\ 5(3) + 1(2) \end{pmatrix}$$

$$\begin{pmatrix}
2 & 3 \\
-1 & 4 \\
5 & 1
\end{pmatrix}
\begin{pmatrix}
3 \\
2
\end{pmatrix}$$

Example: Linear Combination View

$$\mathbf{Av} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2(3) + 3(2) \\ -1(3) + 4(2) \\ 5(3) + 1(2) \end{pmatrix}$$

$$=$$
 $\begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$

Matrix-Matrix Multiplication

• Matrix multiplication is NOT commutative.

• Matrix multiplication is only defined for dimensioncompatible matrices

- If A and B are dimension compatible, then we compute the product AB by multiplying every row of A by every column of B (inner products).
- The (i,j)th entry of the product AB is the ith row of A multiplied by the jth column of B

A and B are dimension compatible for the product AB if the number of columns in A is equal to the number of rows in B

$$\begin{pmatrix} \mathbf{A}_{2} \\ \mathbf{B}_{3} \end{pmatrix} = \begin{pmatrix} (\mathbf{A}_{3})_{23} \\ (\mathbf{A}_{3})_{23} \\$$

$$(\mathbf{AB})_{ij} = \mathbf{A}_{i\star} \mathbf{B}_{\star j}$$

Example: Matrix-Matrix Multiplication

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \\ 5 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 0 & -2 \\ 2 & -3 \end{pmatrix}$$

Check Your Understanding

Suppose we have

$$\mathbf{A}_{4\times6}$$
 $\mathbf{B}_{5\times5}$ $\mathbf{M}_{5\times4}$ $\mathbf{P}_{6\times5}$

Circle the matrix products that are possible to compute and write the dimension of the result.

 $\mathbf{A}\mathbf{M}$ $\mathbf{M}\mathbf{A}$ $\mathbf{B}\mathbf{M}$ $\mathbf{M}\mathbf{B}$ $\mathbf{P}\mathbf{A}$ $\mathbf{P}\mathbf{M}$ $\mathbf{A}\mathbf{P}$ $\mathbf{A}^T\mathbf{P}$ $\mathbf{M}^T\mathbf{B}$

Check your Understanding SOLUTION

Suppose we have

$$\mathbf{A}_{4\times6}$$
 $\mathbf{B}_{5\times5}$ $\mathbf{M}_{5\times4}$ $\mathbf{P}_{6\times5}$

Circle the matrix products that are possible to compute and write the dimension of the result.

Check Your Understanding

Let

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} -2 & 1 & -1 & 2 & -2 \\ 1 & -2 & 0 & -1 & 2 \end{pmatrix}$$
$$\mathbf{C} = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

Determine the following matrix products, if possible.

a. AC

b. AM

c. AC^T

Check your Understanding Solution

Let

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} -2 & 1 & -1 & 2 & -2 \\ 1 & -2 & 0 & -1 & 2 \end{pmatrix}$$
$$\mathbf{C} = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

Determine the following matrix products, if possible.

a.
$$\mathbf{AC} = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

b.
$$\mathbf{AM} = \begin{pmatrix} -1 & -1 & -1 & 1 & 0 \\ 1 & -2 & 0 & -1 & 2 \end{pmatrix}$$

c.
$$AC^T$$
 = not possible

NOT Commutative

Very important to remember that

Matrix multiplication is NOT commutative!

- As we see in previous exercise, common to be able to compute product AB when the reverse product, BA, is not even defined.
- Even when both products are possible, almost never the case that AB = BA.

Diagonal Scaling

Multiplication by a diagonal matrix

Multiplication by a diagonal matrix

$$\mathbf{D} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix} \mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$$

The net effect is that the rows of A are scaled by the corresponding diagonal element of D

Multiplication by a diagonal matrix

Rather than computing DA, what if we instead put the diagonal matrix on the right hand side and compute AD?

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{pmatrix} \ \mathbf{D} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$AD =$$

(Exercise)

Matrix-Matrix Multiplication

As a Collection of Linear Combinations (L-C View)

- Just a collection of matrix-vector products
 (linear combinations) with different coefficients.
- Each linear combination involves the same set of vectors (the green columns) with different coefficients (the purple columns).

- Just a collection of matrix-vector products (linear combinations) with different coefficients.
- Each linear combination involves the same set of vectors (the green columns) with different coefficients (the purple columns).
- This has important implications!

Element-wise Operations

Linear Combinations of Matrices and Vectors.

Vector Multiplication

Inner products and Matrix-Vector Multiplication

Matrix Multiplication

Inner product and linear combination viewpoint

Vector Multiplication

The Outer Product

Vector Outer Product

- The vector outer product is the multiplication of a column vector times a row vector.
- For any column/row this product is possible
- The result of this product is a *matrix*!

Outer Product (column x row)

Outer Product (column x row)

Outer Product (column x row)

Example: Outer Product

Let
$$\mathbf{x} = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}$. Then,

$$\mathbf{x}\mathbf{y}^T = \begin{pmatrix} \mathbf{3} \\ 4 \\ -2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & 5 & 3 \end{pmatrix} = \begin{pmatrix} \mathbf{3} & 15 & 9 \\ 4 & 20 & 12 \\ -2 & -10 & -6 \end{pmatrix}$$

Outer Product has rank 1

From the previous example, you can see that the rows of an outer product are necessarily multiples of each other.

Matrix-Matrix Multiplication

As a Sum of Outer Products (O-P View)

We can write the product AB as a sum of outer products of columns of $A_{(mxn)}$ and rows of $B_{(nxp)}$

$$\mathbf{AB} = \sum_{i=1}^{n} \mathbf{A}_{\star i} \mathbf{B}_{i \star}$$

This view decomposes the product AB into the sum of n matrices, each of which has rank 1 (discussed later).

Challenge Puzzle

- Suppose we have 1,000 individuals that have been divided into 5 different groups each year for 20 years.
- We need to make a 1000×1000 matrix C where $C_{ij} = \#$ times person i grouped with person j
- The data currently has 1000 rows and 5x20 = 100 binary columns indicating whether each individual was a member of each group (yLgK: yearLgroupK): (y1g1, y1g2, y1g3, y1g4, y1g5, y2g1, ... y20g5)
- Can we use what we've just learned to help us here?

Special Cases of Matrix Multiplication The Identity and the Inverse

The Identity Matrix

- The identity matrix, 'I', is to matrices what the number '1' is to scalars.

▶ It is the multiplicative identity.
$$\mathbf{I}_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• For any matrix (or vector) A, multiplying A by the (appropriately sized) identity matrix on either side does not change A:

$$AI = IA = A$$

The Matrix Inverse

▶ For certain square matrices, A, an inverse matrix written A-1, exists such that:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

- A MATRIX MUST BE SQUARE TO HAVE AN INVERSE.
- ▶ NOT ALL SQUARE MATRICES HAVE AN INVERSE
- Only full-rank, square matrices are invertible. (more on this later)
- For now, understand that the inverse matrix serves like the multiplicative inverse in scalar algebra:

$$(2)(2^{-1}) = (2)(\frac{1}{2}) = 1$$

Multiplying a matrix by its inverse (if it exists) yields the multiplicative identity, I

The Matrix Inverse

- A square matrix which has an inverse is equivalently called:
 - Non-singular
 - Invertible
 - Full Rank

Don't Cancel That!!

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

Cancellation implies inversion

Canceling numbers in scalar algebra:

$$2x = 2y$$

$$2x = 2y$$

$$\frac{1}{2}2x = \frac{1}{2}2y$$

$$1x = 1y$$

Canceling matrices in linear algebra:

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$Ix = A^{-1}b$$

$$x = A^{-1}b$$

Inverses can help solve an equation...

WHEN THEY EXIST!