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Inconsistent Systems

In regression (and many other applications) we have a system
of equations we’d like to solve:

Xβ = y

However, this system does not have an exact solution. (i.e. all
of our data points don’t lie exactly on a flat surface)

The best we can do is consider an equation with error and
try to minimize that error:

Xβ̂ = y + ε

Xβ̂ = ŷ

ŷ is the vector of predicted values.

β̂ is the vector of parameter estimates.
X is the design matrix.
ε = ŷ − y is a vector of residuals
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The Normal Equations

Since we can’t solve Xβ = y, we want to solve Xβ̂ = ŷ, where

εTε = (ŷ − y)T(ŷ − y) is minimized.

(Remember, εTε is just the sum of squared error.)

Then β̂ is called a least-squares solution.
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The Normal Equations

Since we can’t solve Xβ = y, we want to solve Xβ̂ = ŷ, where

εTε = (ŷ − y)T(ŷ − y) is minimized.

The set of least-squares solutions is precisely the set of
solutions to the Normal Equations,

XTXβ̂ = XTy.

There is a unique solution if and only if X has full rank.
Linear independence of variables.
# NoPerfectMulticollinearity
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The Normal Equations

XTXβ̂ = XTy

When X has full rank, XTX is invertible. So we can multiply
both sides by the inverse matrix:

β̂ = (XTX)−1XTy

And then by definition, our predicted values are

ŷ = Xβ̂ = X(XTX)−1XTy.
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The Intercept

Remember that we generally have an intercept built into our
model:

β0 + β1x1 + · · ·+ βpxp = y

This means our design matrix, X, has a built-in column of ones:


x1 x2 . . . xp

obs1 1 x11 x12 . . . x1p
obs2 1 x21 x22 . . . x2p
...

...
...

...
...

...
obsn 1 xn1 xn2 . . . xnp


︸ ︷︷ ︸

X


β0
β1
...
βp


︸ ︷︷ ︸
β

=


y0
y1
...

yn


︸ ︷︷ ︸

y

Chapter 5


