Chapter 5 Least Squares

Inconsistent Systems

In regression (and many other applications) we have a system of equations we'd like to solve:

$$X\beta = y$$

However, this system does not have an exact solution. (i.e. all of our data points don't lie exactly on a *flat* surface)

• The best we can do is consider an equation with error and try to minimize that error:

$$\mathbf{X}\widehat{\boldsymbol{eta}} = \mathbf{y} + \boldsymbol{\epsilon}$$

 $\mathbf{X}\widehat{\boldsymbol{eta}} = \widehat{\mathbf{y}}$

- $\hat{\mathbf{y}}$ is the vector of predicted values.
- $\hat{\beta}$ is the vector of parameter estimates.
- **X** is the design matrix.
- $\epsilon = \hat{\mathbf{y}} \mathbf{y}$ is a vector of residuals

Since we can't solve $\mathbf{X}\boldsymbol{\beta} = \mathbf{y}$, we want to solve $\mathbf{X}\widehat{\boldsymbol{\beta}} = \widehat{\mathbf{y}}$, where $\boldsymbol{\epsilon}^T \boldsymbol{\epsilon} = (\widehat{\mathbf{y}} - \mathbf{y})^T (\widehat{\mathbf{y}} - \mathbf{y})$ is minimized.

- (Remember, $\epsilon^T \epsilon$ is just the sum of squared error.)
- Then $\widehat{\beta}$ is called a **least-squares solution**.

Since we can't solve $\mathbf{X}\boldsymbol{\beta} = \mathbf{y}$, we want to solve $\mathbf{X}\widehat{\boldsymbol{\beta}} = \widehat{\mathbf{y}}$, where $\boldsymbol{\epsilon}^T\boldsymbol{\epsilon} = (\widehat{\mathbf{y}} - \mathbf{y})^T(\widehat{\mathbf{y}} - \mathbf{y})$ is minimized.

Since we can't solve $X\beta = y$, we want to solve $X\widehat{\beta} = \widehat{y}$, where $\epsilon^T \epsilon = (\widehat{y} - y)^T (\widehat{y} - y)$ is minimized.

 The set of least-squares solutions is precisely the set of solutions to the Normal Equations,

$$\mathbf{X}^T \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}.$$

Since we can't solve $X\beta = y$, we want to solve $X\widehat{\beta} = \widehat{y}$, where

$$\boldsymbol{\epsilon}^T \boldsymbol{\epsilon} = (\widehat{\mathbf{y}} - \mathbf{y})^T (\widehat{\mathbf{y}} - \mathbf{y})$$
 is minimized.

 The set of least-squares solutions is precisely the set of solutions to the Normal Equations,

$$\mathbf{X}^T \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}.$$

• There is a unique solution if and only if **X** has full rank.

Since we can't solve $X\beta = y$, we want to solve $X\widehat{\beta} = \widehat{y}$, where

$$\boldsymbol{\epsilon}^T\boldsymbol{\epsilon} = (\widehat{\mathbf{y}} - \mathbf{y})^T(\widehat{\mathbf{y}} - \mathbf{y}) \ \text{ is minimized}.$$

 The set of least-squares solutions is precisely the set of solutions to the Normal Equations,

$$\mathbf{X}^T \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}.$$

- There is a unique solution if and only if **X** has full rank.
 - Linear independence of variables.

Since we can't solve $X\beta = y$, we want to solve $X\widehat{\beta} = \widehat{y}$, where

$$\boldsymbol{\epsilon}^T \boldsymbol{\epsilon} = (\widehat{\mathbf{y}} - \mathbf{y})^T (\widehat{\mathbf{y}} - \mathbf{y})$$
 is minimized.

 The set of least-squares solutions is precisely the set of solutions to the Normal Equations,

$$\mathbf{X}^T \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}.$$

- There is a unique solution if and only if **X** has full rank.
 - Linear independence of variables.
 - # NoPerfectMulticollinearity

$$\mathbf{X}^T \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}$$

When \mathbf{X} has full rank, $\mathbf{X}^T\mathbf{X}$ is invertible. So we can multiply both sides by the inverse matrix:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

And then by definition, our predicted values are

$$\widehat{\mathbf{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}.$$

$$\mathbf{X}^T \mathbf{X} \widehat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}$$

When X has full rank, X^TX is invertible. So we can multiply both sides by the inverse matrix:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

And then by definition, our predicted values are

$$\widehat{\mathbf{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}.$$

The Intercept

Remember that we generally have an intercept built into our model:

$$\beta_0 + \beta_1 \mathbf{x}_1 + \dots + \beta_p \mathbf{x}_p = \mathbf{y}$$

This means our *design* matrix, **X**, has a built-in column of ones: