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3 Scenarios for Solutions

There are three general situations we may find ourselves in
when attempting to solve systems of equations:

1 The system could have one unique solution.
2 The system could have infinitely many solutions

(sometimes called underdetermined).
3 The system could have no solutions (sometimes called

overdetermined or inconsistent).

The method of solving these systems is the same in each
scenario.
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Gaussian Elimination

Suppose we have the following simple system of
equations: {

x1 + 2x2 = 11

x1 + x2 = 6

One way to solve this system of equations is to subtract the
second equation from the first.
Perform subtraction on the left hand and right hand sides
of the equation: x1 + 2x2

− (x1 + x2)

x2

 =

11
−6
5


Left with one much simpler equation,

x2 = 5
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Gaussian Elimination

Suppose we have the following simple system of
equations: {

x1 + 2x2 = 11

x1 + x2 = 6

Pair this simpler equation,

x2 = 5

With one of the original equations,

x1 + 2x2 = 11

and we have a system whose solution becomes clear
through substitution.

x1 = 1, x2 = 5

This final process of substitution is often called back
substitution.
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Row Operations

For any system of equations, there are 3 operations which will
not change the solution set. Taking our simple system from the
previous example, we’ll examine these three operations
concretely...
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1) Interchanging Rows

{
x1 + 2x2 = 11

x1 + x2 = 6

Interchanging the order of the equations.

Clearly, {
x1 + 2x2 = 11
x1 + x2 = 6

⇔

{
x1 + x2 = 6
x1 + 2x2 = 11
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2) Multiplying one row by a scalar constant

{
x1 + 2x2 = 11

x1 + x2 = 6

Multiplying both sides of one equation by a constant.

The second equation doesn’t really change if multiplied by
2, {

x1 + 2x2 = 11
x1 + x2 = 6

⇔

{
x1 + 2x2 = 11

2x1 + 2x2 = 12
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3)Replacing one equation with a combination

{
x1 + 2x2 = 11

x1 + x2 = 6

Replace one equation by a combination of itself plus a
multiple of another equation.

As was demonstrated previously, we can replace equation 2
with the combination of (equation 2 - equation 1).{

x1 + 2x2 = 11
x1 + x2 = 6

⇔

{
x1 + 2x2 = 11

x2 = 5
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Triangular Systems

Using these row operations, we can transform any system of
equations into one that is triangular. A triangular system is one
that can be solved by back substitution, for example:

x1 + 2x2 + 3x3 = 14

x2 + x3 = 6

x3 = 1
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Example - Transforming a System to Triangular


x1 + x2 + x3 = 1

x1 − 2x2 + 2x3 = 4

x1 + 2x2 − x3 = 2

We will want to eliminate the variable x1 from two of the
equations:

a. Replace equation 2 with (equation 2 - equation 1).
b. Replace equation 3 with (equation 3 - equation 1).

Then, our system becomes:
x1 + x2 + x3 = 1

− 3x2 + x3 = 3

x2 − 2x3 = 1
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Example - Transforming a System to Triangular


x1 + x2 + x3 = 1

− 3x2 + x3 = 3

x2 − 2x3 = 1

Next, we will want to eliminate the variable x2 from the
third equation. We can do this by replacing equation 3
with (equation 3 + 1

3 equation 2) OR...
Swap equations 2 and 3 first (to avoid fractions).

x1 + x2 + x3 = 1

x2 − 2x3 = 1

− 3x2 + x3 = 3
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Example - Transforming a System to Triangular


x1 + x2 + x3 = 1

x2 − 2x3 = 1

− 3x2 + x3 = 3

NOW eliminate x2 from the third equation
Replace equation 3 with (equation 3 + 3*equation 2).

x1 + x2 + x3 = 1

x2 − 2x3 = 1

− 5x3 = 6
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Example - Transforming a System to Triangular


x1 + x2 + x3 = 1

x2 − 2x3 = 1

− 5x3 = 6

Now that our system is in triangular form, we can use
substitution to solve for all of the variables:

x1 = 3.6 x2 = −1.4 x3 = −1.2

This is the procedure for Gaussian Elimination, which we will
now formalize in its matrix version.
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The Augmented Matrix

The augmented matrix contains all of the numerical
information from our system of equations.
Matrix that contains all of the coefficients of the equations,
augmented with an extra column containing the right
hand sides of the equations.
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The Augmented Matrix

If our system is:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

Then the corresponding augmented matrix isa11 a12 a13 b1
a21 a22 a23 b2
a31 a12 a33 b3


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Row Operations on The Augmented Matrix

The augmented matrix contains all of the information
needed to perform the three operations outlined
previously.
We will formalize these operations as they pertain to the
rows of the augmented matrix.
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Row Operations for Gaussian Elimination

Gaussian Elimination is performed on an augmented matrix by
using the three elementary row operations:

1 Swap rows i and j.
2 Replace row i by a nonzero multiple of itself.
3 Replace row i by a linear combination of itself plus a

multiple of row j.
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Row Operations for Gaussian Elimination

The ultimate goal of Gaussian elimination is to transform an
augmented matrix A into an upper-triangular matrix which
allows for solving via back substitution.

A→


t11 t12 . . . t1n c1
0 t22 . . . t2n c2
...

...
. . .

...
...

0 0 . . . tnn cn


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Pivots

The key to this process at each step is to focus on one position,
called the pivot position or simply pivot, and try to eliminate all
terms below this position using the three row operations.

x1 + x2 + x3 = 1

x1 − 2x2 + 2x3 = 4
x1 + 2x2 − x3 = 2

=⇒ 1 1 1 1
1 −2 2 4
1 2 −1 2


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Example - Row Operations on the Augmented Matrix

After we identify the current pivot, our goal is to eliminate the
numbers below (circled) using the row with the pivot.1 1 1 1

1 −2 2 4
1 2 −1 2

 CurrentPivot−−−−−−−→

 1 1 1 1
1 −2 2 4
1 2 −1 2


For instance, we’d replace row 2 by the combination

(row 2− row 1).

Our shorthand notation for this will be R2’ = R2-R1.
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Example - Row Operations on the Augmented Matrix

1 1 1 1
1 −2 2 4
1 2 −1 2

 R2′=R2−R1−−−−−−−→

 1 1 1 1
0 −3 1 3
1 2 −1 2


 1 1 1 1

0 −3 1 3
1 2 −1 2

 R3′=R3−R1−−−−−−−→

 1 1 1 1
0 −3 1 3
0 1 −2 1


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Example - Row Operations on the Augmented Matrix

Now that we have eliminated each of the circled elements
below the current pivot, we will continue on to the next pivot,
which is -3.

NextPivot−−−−−→

 1 1 1 1
0 -3 1 3
0 1 −2 1


Looking into the future, we can either do the operation
R3′ = R3 + 1

3 R2 or we can interchange rows 2 and 3 to avoid
fractions in our next calculation. (note: either way you proceed will
lead you to the same solution!)
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Example - Row Operations on the Augmented Matrix

 1 1 1 1
0 -3 1 3
0 1 −2 1

 R2↔R3−−−−→

 1 1 1 1
0 1 −2 1
0 -3 1 3


Now that the current pivot is equal to 1, we can more easily
eliminate the circled entry below it using combinations with
the pivot row.

R3′=R3+3R2−−−−−−−−→

 1 1 1 1
0 1 −2 1
0 0 -5 6


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Example - Row Operations on the Augmented Matrix

 1 1 1 1
0 1 −2 1
0 0 -5 6


When all the pivots have been reached, the augmented
matrix is said to be in row-echelon form.
This simply means that all of the entries below the pivots
are equal to 0.
Left part of A is upper-triangular.

Chapter 4



Example - Row Operations on the Augmented Matrix

The augmented matrix can be transformed back into equation
form now that it is in a triangular form:

x1 + x2 + x3 = 1

x2 − 2x3 = 1

5x3 = −6

Which can (again) be solved by back substitution to get:

x1 = 3.6 x2 = −1.4 x3 = −1.2
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Gaussian Elimination Summary: Step-by-step

1 Identify the first pivot element. The first pivot element
should be located in the first row (if this entry is zero, we
must interchange rows so that it is non-zero).

2 Eliminate all elements below the pivot using the
combination row operation.

3 Determine the next pivot and go back to step 2.
Only nonzero numbers are allowed to be pivots! If a
coefficient in a pivot position is ever 0, then the rows of the
matrix should be interchanged to find a nonzero pivot. If
this is not possible then we continue on to the next possible
column where a pivot position can be created.

4 When the entries below all of the pivots are equal to zero,
the process stops. The augmented matrix is said to be in
row-echelon form

Triangular system of equations
Solve using back substitution
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Gaussian Elimination and Rank of a Matrix

The rank of a matrix can be defined as the number of pivot
elements used in Gaussian Elimination.

full row-rank if there is a pivot in every row.
full column-rank if there is a pivot in every column.
full rank if it is either full row-rank or full-column rank.

A square matrix with full rank has an inverse!
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Check your Understanding

Use Gaussian Elimination to solve the following system of
equations: 

2x2 + 3x3 = 8

2x1 + 3x2 + 1x3 = 5

x1 − x2 − 2x3 = −5

Is the coefficient matrix full rank? How do you know?
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Check your Understanding - Solution

Use Gaussian Elimination to solve the following system of
equations: 

2x2 + 3x3 = 8

2x1 + 3x2 + 1x3 = 5

x1 − x2 − 2x3 = −5

The solution is x1
x2
x3

 =

0
1
2


Is the coefficient matrix full rank? How do you know? Yes, the
coefficient matrix is full rank. It has a pivot element in every
row. (Similarly you could say it has a pivot element in every
column)
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Gauss-Jordan Elimination

In Gauss-Jordan elimination, we do not stop when the
augmented matrix is in row-echelon form. Instead, two
additional things are required:

1 Force all the pivot elements to equal 1
2 Eliminate entries above the pivot elements to reach what’s

called reduced row echelon form.
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Example: Gauss-Jordan Elimination

We begin with a system of equations, and transform it into an
augmented matrix:

x2 − x3 = 3

−2x1 + 4x2 − x3 = 1

−2x1 + 5x2 − 4x3 = −2

=⇒

 0 1 −1 3
−2 4 −1 1
−2 5 −4 −2


We start by locating our first pivot element. This element
cannot be zero, so we will have to swap rows to bring a
non-zero element to the pivot position.
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Example: Gauss-Jordan Elimination

 0 1 −1 3
−2 4 −1 1
−2 5 −4 −2

 R1↔R2−−−−→

 -2 4 −1 1
0 1 −1 3
−2 5 −4 −2


Now that we have a non-zero pivot, we will want to do two
things:

Use the pivot to eliminate all of the elements below it (as
with Gaussian elimination)
Make the pivot element equal to 1.

It does not matter what order we perform these two tasks in.
Here, we will have an easy time eliminating using the -2 pivot.
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Example: Gauss-Jordan Elimination

 -2 4 −1 1
0 1 −1 3
−2 5 −4 −2

 R3′=R3−R1−−−−−−−→

 -2 4 −1 1
0 1 −1 3
0 1 −3 −3


Now, as promised, we will make our pivot equal to 1. -2 4 −1 1

0 1 −1 3
0 1 −3 −3

 R1′=− 1
2 R1

−−−−−−→

 1 −2 1
2 −1

2
0 1 −1 3
0 1 −3 −3



Chapter 4



Example: Gauss-Jordan Elimination

We have finished our work with this pivot, and now we move
on to the next one. Since it is already equal to 1, the only thing
left to do is use it to eliminate the entries below it:1 −2 1

2 − 1
2

0 1 −1 3
0 1 −3 −3

 R3′=R3−R2−−−−−−−→

1 −2 1
2 −1

2
0 1 −1 3
0 0 −2 −6


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Example: Gauss-Jordan Elimination

And then we move onto our last pivot. This pivot has no
entries below it to eliminate, so all we must do is turn it into a 1:1 −2 1

2
−1
2

0 1 −1 3
0 0 -2 −6

 R3′=− 1
2 R3

−−−−−−→

1 −2 1
2 −1

2
0 1 −1 3
0 0 1 3


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Example: Gauss-Jordan Elimination

Now, what really differentiates Gauss-Jordan elimination from
Gaussian elimination is the next few steps. Here, our goal will
be to use the pivots to eliminate all of the entries above them.
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Example: Gauss-Jordan Elimination

We’ll start at the southeast corner on the current pivot. We will
use that pivot to eliminate the elements above it:1 −2 1

2 − 1
2

0 1 −1 3
0 0 1 3

 R2′=R2+R3−−−−−−−→

1 −2 1
2 −1

2
0 1 0 6
0 0 1 3


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Example: Gauss-Jordan Elimination

1 −2 1
2 −1

2
0 1 0 6
0 0 1 3

 R1′=R1− 1
2 R3

−−−−−−−−→

1 −2 0 −2
0 1 0 6
0 0 1 3


We’re almost done! One more pivot with elements above it to
be eliminated
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Example: Gauss-Jordan Elimination

1 −2 0 −2
0 1 0 6
0 0 1 3

 R1′=R1+2R2−−−−−−−−→

1 0 0 10
0 1 0 6
0 0 1 3


And we’ve reached what’s called reduced row echelon form.
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Example: Gauss-Jordan Elimination

1 0 0 10
0 1 0 6
0 0 1 3


How does this help us? Well, let’s transform back to a system of
equations: 

x1 = 10

x2 = 6

x3 = 3

The solution is simply what’s left in the right hand column of
the augmented matrix.
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Gauss-Jordan Elimination Summary

1 Identify the first pivot element. The first pivot element
should be located in the first row (if this entry is zero, we
must interchange rows so that it is non-zero).

2 The pivot element should be equal to 1. If it is not, we
simply multiply the row by a constant to make it equal 1
(or interchange rows, if possible).

3 Eliminate (zero-out) all elements below the pivot using the
combination row operation.

4 Determine the next pivot and go back to step 2.
5 When the last pivot is equal to 1, begin to eliminate all the

entries above the pivot positions.
6 When all entries above and below each pivot element are

equal to zero, the augmented matrix is said to be in reduced
row echelon form and the Gauss-Jordan elimination process
is complete.
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Check your Understanding

Use Gauss-Jordan Elimination to solve the following system of
equations: 

2x2 + 3x3 = 8

2x1 + 3x2 + 1x3 = 5

x1 − x2 − 2x3 = −5
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Check your Understanding - Solution

Use Gauss-Jordan Elimination to solve the following system of
equations: 

2x2 + 3x3 = 8

2x1 + 3x2 + 1x3 = 5

x1 − x2 − 2x3 = −5

The solution is still x1
x2
x3

 =

0
1
2


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Three Types of Systems

There are 3 situations that may arise when solving a system of
equations:

Case 1: The system could have one unique solution (this is the case
with the examples thus far).

Case 2: The system could have no solutions (sometimes called
overdetermined or inconsistent).

Case 3: The system could have infinitely many solutions
(sometimes called underdetermined).

Chapter 4



The Unique Solution Case

In the previous examples, we have seen this situation where
the system of equations leads us to one precise solution.
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The Inconsistent Case

The second case scenario is a very specific one. For a system of
equations to be inconsistent and have no solutions, at least one
equation reduces to the form

0 = α

where α is nonzero after Gaussian Elimination:∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 0 0 α


The third row indicates that

0x1 + 0x2 + 0x3 = α

where α 6= 0, which is a contradiction.
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Example - Identifying an Inconsistent System


x− y + z = 1

x− y− z = 2

x + y− z = 3

x + y + z = 4

Using the augmented matrix and Gaussian elimination, we
take the following steps:

1 −1 1 1
1 −1 −1 2
1 1 −1 3
1 1 1 4


R2′=R2−R1
R3′=R3−R1
R4′=R4−R1−−−−−−−→


1 −1 1 1
0 0 −2 1
0 2 −2 2
0 2 0 3


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Example - Identifying an Inconsistent System


1 −1 1 1
0 0 −2 1
0 2 −2 2
0 2 0 3

 R4↔R2−−−−→


1 −1 1 1
0 2 0 3
0 2 −2 2
0 0 −2 1




1 −1 1 1
0 2 0 3
0 2 −2 2
0 0 −2 1

 R3′=R3−R2−−−−−−−→


1 −1 1 1
0 2 0 3
0 0 −2 −1
0 0 −2 1



R4′=R4−R3−−−−−−−→


1 −1 1 1
0 2 0 3
0 0 −2 −1
0 0 0 2


In this final step, we see our contradiction equation, 0 = 2.
Since this is obviously impossible, we conclude that the system
is inconsistent.
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Example - Identifying an Inconsistent System

Sometimes inconsistent systems are referred to as
over-determined.
Usually because more equations than variables.
Holding too many demands for a small set of variables!
This is precisely the situation in which we find ourselves
when we approach linear regression!
Since we can’t find an exact solution, we have to try to get
the left and right hand sides as close as possible.
This is done using the Least Squares method (coming
soon...)
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The Infinite Solutions Case

Consider the following system of equations written as an
augmented matrix, and its reduced row echelon form after
Gauss-Jordan elimination.1 2 3 0

2 1 3 0
1 1 2 0

 Gauss−Jordan−−−−−−−−→

1 0 1 0
0 1 1 0
0 0 0 0


Notice the following:

The reduced form has a row that is completely 0.

One of the equations was completely eliminated using a
combination of the others.
It contained unnecessary/redundant information.

There are only 2 pivot elements.
Last entries in third column could not be eliminated.
Characteristic of what’s called a free-variable.
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The Infinite Solutions Case

Translating our reduced system back to equations:1 0 1 0
0 1 1 0
0 0 0 0

 −→ {
x1 + x3 = 0

x2 + x3 = 0

Answer depends on the variable x3, which is free to take on any
value. Suppose that x3 = α. Then our solution would be:x1

x2
x3

 =

−α−α
α

 = α

−1
−1
1



Any scalar multiple of the vector

−1
−1
1

 is a solution! There are

infinitely many solutions!
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The Infinite Solutions Case

A system of equations Ax = b has infinitely many solutions if
the system is consistent and any of the following conditions
hold:

1 After Gauss-Jordan elimination, at least one row of the
matrix has every element equal to 0.

2 The number of variables is greater than the number of
equations.

3 One of the equations is a linear combination of the others.
4 There is at least one free variable presented in the reduced

row echelon form.
5 The number of pivots is less than the number of variables.
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Example - The Infinite Solutions Case

For this reduced system, characterize the set of all solutions.
1 0 1 2 0
0 1 1 −1 0
0 0 0 0 0
0 0 0 0 0


{

x1 + x3 + 2x4 = 0

x2 + x3 − x4 = 0
=⇒

{
x1 = −x3 − 2x4

x2 = −x3 + x4

Now we have two variables which are free to take on any value.
Thus, let

x3 = s and x4 = t

Then, our solution is:
x1
x2
x3
x4

 =


−s− 2t
−s + t

s
t

 = s


−1
−1
1
0

+ t


−2
1
0
1


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Example - The Infinite Solutions Case

Then, our solution is:
x1
x2
x3
x4

 =


−s− 2t
−s + t

s
t

 = s


−1
−1
1
0

+ t


−2
1
0
1


so any linear combination of the vectors

−1
−1
1
0

 and


−2
1
0
1


will provide a solution to this system.
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Solving Matrix Equations

What happens when we have a matrix equation like

AX = B?

This situation is an easy extension of our previous problem
because we are essentially solving the same system of equation
with several different right-hand-side vectors (the columns of
B).
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Solving Matrix Equations

Let’s look at a 2× 2 example to get a feel for this. We’ll dissect
the following matrix equation into two different systems of
equations: (

1 1
2 1

)(
x11 x12
x21 x22

)
=

(
3 3
4 5

)
.
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Solving Matrix Equations

This matrix equation represents 4 separate equations which
we’ll combine into two systems:(

1 1
2 1

)(
x11
x21

)
=

(
3
4

)
and

(
1 1
2 1

)(
x12
x22

)
=

(
3
5

)
The augmented matrices for these two systems:(

1 1 3
2 1 4

)
and

(
1 1 3
2 1 5

)
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Solving Matrix Equations

(
1 1 3
2 1 4

)
and

(
1 1 3
2 1 5

)

When performing Gauss-Jordan elimination on these two
augmented matrices, how are the row operations going to
differ?

They’re not!

The same row operations will be used for each augmented
matrix - the only thing that will differ is how these row
operations will affect the right hand side vectors.
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Solving Matrix Equations

Thus, it is possible for us to keep track of those differences in
one larger augmented matrix :(

1 1 3 3
2 1 4 5

)
We can then perform the row operations on both right-hand
sides at once.
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Solving Matrix Equations

(
1 1 3 3
2 1 4 5

)
R2′=R2−2R1−−−−−−−−→

(
1 1 3 3
0 −1 −2 −1

)
(

1 1 3 3
0 −1 −2 −1

)
R2′=−1R2−−−−−−→

(
1 1 3 3
0 1 2 1

)
(

1 1 3 3
0 1 2 1

)
R1′=R1−R2−−−−−−−→

(
1 0 1 2
0 1 2 1

)
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Solving Matrix Equations

(
1 0 1 2
0 1 2 1

)
Now again, remembering the situation from which we came,
we have the equivalent system:(

1 0
0 1

)(
x11 x12
x21 x22

)
=

(
1 2
2 1

)
So we can conclude that(

x11 x12
x21 x22

)
=

(
1 2
2 1

)
and we have solved our system.
This method is particularly useful when finding the inverse of a
matrix.
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Solving for the Inverse of a Matrix

For any square matrix A, we know the inverse matrix (A−1), if
it exists, satisfies the following matrix equation,

AA−1 = I.

Thus, using the Gauss-Jordan method with multiple right hand
sides, we can solve for the inverse of any matrix.(

A I
) Gauss−Jordan−−−−−−−−→

(
I A−1)

If this is possible then the matrix on the right is the inverse of
A. If this is not possible then A does not have an inverse.
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Example - Solving for the Inverse of a Matrix

To find the inverse of

A =

−1 2 −1
0 −1 1
2 −1 0


using Gauss-Jordan Elimination, we first set up the augmented
matrix as

(
A I

)
: −1 2 −1 1 0 0

0 −1 1 0 1 0
2 −1 0 0 0 1


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Example - Solving for the Inverse of a Matrix

We then proceed with Gauss-Jordan Elimination to transform
the left hand side into the identity matrix: −1 2 −1 1 0 0

0 −1 1 0 1 0
2 −1 0 0 0 1

 R3′=R3+2R1−−−−−−−−→

 −1 2 −1 1 0 0
0 −1 1 0 1 0
0 3 −2 2 0 1


 −1 2 −1 1 0 0

0 −1 1 0 1 0
0 3 −2 2 0 1

 R1′=−1R1
R3′=R3+3R2−−−−−−−−→

 1 −2 1 −1 0 0
0 −1 1 0 1 0
0 0 1 2 3 1


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Example - Solving for the Inverse of a Matrix

 1 −2 1 −1 0 0
0 −1 1 0 1 0
0 0 1 2 3 1

 R1′=R1−R3
R2′=R2−R3−−−−−−−→

 1 −2 0 −3 −3 −1
0 −1 0 −2 −2 −1
0 0 1 2 3 1


 1 −2 0 −3 −3 −1

0 −1 0 −2 −2 −1
0 0 1 2 3 1

 R2′=−1R2
R1′=R1+2R2−−−−−−−−→

 1 0 0 1 1 1
0 1 0 2 2 1
0 0 1 2 3 1


Finally, we have completed our task. The inverse of A is the
matrix on the right hand side of the augmented matrix!

A−1 =

1 1 1
2 2 1
2 3 1


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Check your Understanding

Use the same method to determine the inverse of

B =

1 1 1
2 2 1
2 3 1


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Check your Understanding - Solution

Use the same method to determine the inverse of

B =

1 1 1
2 2 1
2 3 1


The previous example actually tells us the answer we’re
looking for. If B is the inverse of A then A is also the inverse of
B! So you should reach the solution

A =

−1 2 −1
0 −1 1
2 −1 0


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Example - Inverse of a Diagonal Matrix

A full rank diagonal matrix (one with no zero diagonal
elements) has a particularly neat and tidy inverse.

D =

3 0 0
0 −2 0
0 0

√
5


Simple Gauss-Jordan Elimination:

 3 0 0 1 0 0
0 −2 0 0 1 0
0 0

√
5 0 0 1


R1′= 1

3 R1
R2′=− 1

2 R2
R3′= 1√

5
R3

−−−−−−→

 1 0 0 1
3 0 0

0 1 0 0 −1
2 0

0 0 1 0 0 1√
5


Thus, the inverse of D is:

D−1 =

 1
3 0 0
0 −1

2 0
0 0 1√

5


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