Worksheet - Lecture 2 Introduction to Linear Algebra Part Two

1. Use the following matrices or vectors to answer the following questions:

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 8 \\ 3 & 0 & -2 \\ 8 & -2 & -3 \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} 1 & 8 & -2 & 5 \\ 2 & 8 & 1 & 7 \end{pmatrix} \quad \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
$$\mathbf{v} = \begin{pmatrix} 6 \\ 3 \\ -1 \\ 2 \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} 6 & 4 & 8 & 1 \end{pmatrix}$$

a. Write the following matrices or vectors:

$$\mathbf{M}^{T} = \begin{pmatrix} 1 & 2 \\ 8 & 8 \\ -2 & 1 \\ 5 & 7 \end{pmatrix}$$

$$\mathbf{v}^{T} = \begin{pmatrix} 6 & 3 & -1 & 2 \end{pmatrix}$$

$$\mathbf{u}^{T} = \begin{pmatrix} 6 \\ 4 \\ 8 \\ -2 & -3 \end{pmatrix}$$

$$(\mathbf{M}^{T})^{T} = \begin{pmatrix} 1 & 8 & -2 & 5 \\ 2 & 8 & 1 & 7 \end{pmatrix}$$

- b. Which of these matrices is symmetric? A_1
- c. Can a rectangular matrix be symmetric? no. AT cannot equal A unless these matrices have the same size!
- d. What is $Tr(\mathbf{A})$?

$$Tr(A) = 1 + 0 + (-3) = -2$$

e. If possible, compute $Tr(\mathbf{M})$. If not possible, explain why.

2. Write out the following matrices or vectors:

He out the following matrices of vectors:
$$\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{e}_3 \in \mathbb{R}^5 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$diag\{\sigma_1, \sigma_2, \sigma_3\} = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

- 3. If a matrix M is upper triangular than M^T is <u>lower triangular</u>
- 4. If **S** is a diagonal matrix, then $S_{12} = 0$