Worksheet - Lecture 4
Matrix Arithmetic Part Two

1. Use the following matrices to answer the questions:
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a. Circle the matrix products that are possible and specify their resulting dimensions:
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o Compute the following matrix products:
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e From the previous computation, AD, do you notice anything interesting about multiplying a matrix
by a diagonal matrix on the right? Can you generalize what happens in words?
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Different Views of Matrix Multiplication

2. Consider the matrix product AB where

1 2 25
a=(3) 2= 3)
Let C = AB.

e Compute the matrix product C.
I 2 2 5 - 4 I
(5 4 3 |3 02

e Compute the matrix-vector product AB,; and show that this is the first column of C. (Likewise,
AB,; is the second column of C.) (Matrix multiplication can be viewed as a collection of matrix-vector

a6 - )

L1 Kew 15¢ (‘3 :)(35) - (1”.,>

e Compute the two outer products using columns of A and rows of B and show that
AaBi +ApB; =C

(Matrix multiplication can be viewed as the sum of outer products.)
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e Since AB,; is the first column of C, show how C, can be written as a linear combination of columns
of A. (Matrix multiplication can be viewed as a collection of linear combinations of columns of the first

matrix.) Cxl = Bn A*' + BZLA*l

l 2
g = 2 ( > + 1 < >
lo 5 Y
e Finally, note that A;, B will give the first row of C. (This amounts to a linear combination of rows - can

you see that?)
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