Network Analysis

Dr. Shaina Race Institute for Advanced Analytics

Network Centrality

Measuring Influence in a Network

Centrality

- Centrality is a measure of how importance a vertex is to a graph.
- There are many ways to define importance.
- Measures usually normalized in [0,1] for comparison across networks
- Common measures of centrality:
 - Degree Centrality
 - Betweenness Centrality
 - Closeness Centrality
 - Eigenvector Centrality

Centrality

- Centrality is a measure of how importance a vertex is to a graph.
- There are many ways to define importance.
- Measures usually normalized in [0,1] for comparison across networks
- Common measures of centrality:
 - Degree Centrality
 - Betweenness Centrality
 - Closeness Centrality
 - Eigenvector Centrality

Degree Centrality

- Measures the exposure of vertex to others in network
- Degree centrality for vertex v is $c_D(v) = \frac{a_v}{n-1}$
 - d_v=degree of vertex v
 - n=number of vertices in network
- Max value is 1 (if vertex is connected to all other vertices).
- Local measure: can be deceiving

Deceptive Degree Centrality

Centrality

- Centrality is a measure of how importance a vertex is to a graph.
- There are many ways to define importance.
- Measures usually normalized in [0,1] for comparison across networks
- Common measures of centrality:
 - Degree Centrality
 - Betweenness Centrality
 - Closeness Centrality
 - Eigenvector Centrality

Betweenness Centrality

Measures **control** that each node has **over communication** between other nodes.

Betweenness Centrality

• Sum of proportions of shortest paths between 2 nodes that pass through the node of interest.

$$c_B(v) = \sum_{i \neq v \neq j} \frac{\delta_{ij}(v)}{\delta_{ij}}$$

- δ_{ij} =number of shortest paths between nodes i and j
- $\delta_{ij}(v)$ =number of shortest paths between i and j that go through node u
- Can also consider *edge betweenness centrality* using paths that include a given edge.

Note: Be sure to use Brandes' Algorithm to compute betweenness! Developed in 2001, O(mn) for unweighted graphs and O(n²logn+mn) for unweighted graphs

3.5

$$c_B(v) = \sum_{i \neq v \neq j} \frac{\delta_{ij}(v)}{\delta_{ij}}$$

D

E

Step 1: List all pairs of nodes, excluding the node of interest.

$$c_B(v) = \sum_{i \neq v \neq j} \frac{\delta_{ij}(v)}{\delta_{ij}}$$

Source	Target	# of shortest	
		paths	
A	С	1	
A	D	1	
A	E	2	
С	D	2	
С	E	1	
D	E	1	

Step 2: Compute the number of shortest paths between each pair.

$$c_B(v) = \sum_{i \neq v \neq j} \frac{\delta_{ij}(v)}{\delta_{ij}}$$

Source	Target	# of shortest	% that
		paths	include B
A	\mathbf{C}	1	1/1
A	D	1	1/1
A	E	2	2/2
С	D	2	1/2
С	E	1	0/1
D	Ε	1	0/1

Step 3: What proportion of those shortest paths contain the node of interest?

$$c_B(v) = \sum_{i \neq v \neq j} \frac{\delta_{ij}(v)}{\delta_{ij}}$$

Source	Target	# of shortest	% that
		paths	include B
A	\mathbf{C}	1	1/1
A	D	1	1/1
A	E	2	2/2
С	D	2	1/2
C	E	1	0/1
D	E	1	0/1

Step 4: Add.

3.5

Utility of Betweenness

- Identify potential **bottlenecks** in the network.
- Bridge Betweenness: Restrict pairs of nodes in previous table to a sources and targets from different communities.
- Teaching a robot how to learn new skills by first identifying which skill is most beneficial to master next.

•

Utility of Betweenness

Indicating the interdisciplinarity of scientific journals.

Betweenness Centrality Normalization

- Normalize each value by the maximum possible centrality score = the number of pairs of nodes excluding the given node.
 - For directed graph, normalize by (n-1)(n-2)
 - For undirected graph, normalize by (n-1)(n-2)/2
- Again, normalization just allows for comparison across networks.

Betweenness Centrality

Octavio Cortes

Centrality

- Centrality is a measure of how importance a vertex is to a graph.
- There are many ways to define importance.
- Measures usually normalized in [0,1] for comparison across networks
- Common measures of centrality:
 - Degree Centrality
 - Betweenness Centrality
 - Closeness Centrality
 - Eigenvector Centrality

Closeness Centrality

• Measures how quickly information will spread from one node to *all* other nodes.

• Node is important if close to all other nodes.

• Farness defined as the sum of distances to all other nodes. Closeness is then the inverse of farness.

Closeness Centrality

Utility of Closeness

• "In an auditory lexical decision task participants responded more quickly to words with high closeness centrality [in a phonological network]."

—Goldstein, Vitevitch. U Kansas. 2017

- <u>Identifying a group of nodes to optimally spread</u> information.
- City planning
- <u>"Too interconnected to fail"</u> examination of centrality of institutions in network of financial institutions. Closeness implies transmission of failure to many in a few steps.

Closeness Centrality

$$c_c(v) = \frac{1}{\sum_{u \neq v} d(u, v)}$$

- Normalize by maximum possible score, which would be 1/(n-1) when the node is connected to all others.
 - i.e. multiply by (n-1) to normalize.
- Only defined for connected graphs

Comparing 3 Centralities

- The centrality measures should be correlated.
- If not, that *might* mean something interesting.

	$egin{array}{c} { m Low} \\ { m Degree} \end{array}$	Low Closeness	$egin{array}{c} { m Low} \\ { m Betweenness} \end{array}$
$egin{align} { m High} \\ { m Degree} \\ \end{array}$		In cluster far from rest of network	Connections are redundant. Communication bypasses node
High Closeness	Key player, tied to important, active alternatives		Prob. multiple paths everywhere in network. Near many, just like everyone else
High Betweenness	A few edges are crucial for network flow	RARE. Node monopolizes ties from few to many	

Comparing 3 Centralities

Comparing 3 Centralities

Code for Previous Slides

Centrality

- Centrality is a measure of how importance a vertex is to a graph.
- There are many ways to define importance.
- Measures usually normalized in [0,1] for comparison across networks
- Common measures of centrality:
 - Degree Centrality
 - Betweenness Centrality
 - Closeness Centrality
 - Eigenvector Centrality

- Would you rather have influence over the Provost and the Chancellor or all of the university's graduate TAs?
- The previous definitions of centrality have a problem: They don't take into account the importance of your contacts.
- Previous measures don't necessarily measure influence.

What if each node's centrality was the sum of the centralities of the nodes to which it is connected?

 $c_A = 0c_A + 1c_B + 0c_C + 0c_D$ $c_B = 1c_A + 0c_B + 1c_C + 0c_D$ $c_C = 0c_A + 1c_B + 0c_C + 1c_D$ $c_D = 0c_A + 1c_B + 1c_C + 0c_D$

Adjacency Matrix

What if each node's centrality was the sum of the centralities of the nodes to which it is connected?

- Let A be a binary adjacency matrix.
- Let **x** be the vector of centralities.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} c_A \\ c_B \\ c_C \\ c_D \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} c_A \\ c_B \\ c_C \\ c_D \end{pmatrix}$$

Then what we want is: Ax = x

$$Ax = x$$

• Of course, this may not always be possible, so we'll add in a constant — each node's centrality is proportional to the sum of its neighbors.

$$Ax = \lambda x$$

• Look familiar?? The ever-useful eigenvector equation

- But which eigenvalue??
- We want the centralities to be positive.
- The **first** eigenvector of an adjacency matrix is guaranteed to have all positive elements.
 - (Perron-Frobenius Theorem of Nonnegative Matrices)
- Google's PageRank is a variant of eigenvector centrality, using the hyperlink structure of the net.
 - See original HITS algorithm

Utility of Eigenvector Centrality

- It's the **most** useful measure because it contains a notion of influence of neighbors.
- Google
- Examining Volleyball game flow
- <u>Cooperative Streaming</u> timely and efficient distribution of content in a communication network
- Feature Selection!

When is Centrality Interesting?

Centralization of Network

- How much variation in centrality scores?
- How central is maximum centrality compared to others?

0 < Centralization < 1

All nodes have the same centrality

One node has maximal centrality, all other nodes have minimal centrality

Centralization of Network

• Freeman's formula for degree centralization:

$$C_D = \frac{\sum_{i=1}^{n} \left(max(c_D) - c_D(i) \right)}{(n-1)(n-2)}$$

• Can be adopted for other types of centrality just by changing denominator and centrality function.

Calculating Centrality Scores in Gephi

Try: Filtering + Rerunning measures.

