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Network Centrality

Measuring Influence in a Network



Centrality

Centrality is a measure of how importance a vertex is to a
graph.
There are many ways to define importance.
Measures usually normalized in [0,1| for comparison across
networks
Common measures of centrality:

e Degree Centrality

e Betweenness Centrality

e Closeness Centrality

e Eigenvector Centrality



Centrality

e Common measures of centrality:

e Degree Centrality



Degree Centrality

Measures the exposure of vertex to others in

network

Degree centrality for vertex v is cp(v) = 1
n —

o d —degree of vertex v
e n—=—number of vertices in network

Max value is 1 (if vertex is connected to all other vertices).

Local measure: can be deceiving



Deceptive Degree Centrality
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Centrality

e Common measures of centrality:

e Betweenness Centrality



Betweenness Centrality

Measures control that each node has over

communication between other nodes.
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Betweenness Centrality

e Sum of proportions of shortest paths between 2 nodes
that pass through the node of interest.
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e« Oy=number of shortest paths between nodes i and j

e O;(v)=number of shortest paths between i and j that go through node u

e (Can also consider edge betweenness centrality using paths
that include a given edge.



Betweenness Centrality
FExample

5,(v)

cp(v) = Z S

i#vE Y

Note: Be sure to use Brandes’ Algorithm to compute betweenness! Developed in

2001, O(mn) for unweighted graphs and O(n2logn+mn) for unweighted graphs



Betweenness Centrality
Example

5,(v)

)= ), — ®

i#vj U 0

Source Target

A C
A D
A E
C D
C E
D E

Step 1: List all pairs of nodes, excluding the node of interest.



Betweenness Centrality
Example

= Y 5,(v) ® 35

et O 0

Source Target # OEZ?I?:CGSJC 1
A C 1
A D 1
A E 2
C D 2
C E 1
D E 1

Step 2: Compute the number of shortest paths between each pair.



Betweenness Centrality
FExample
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Source Target
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Q Q » »
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5,(v)

S..

7

C

o O = O
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0

# of shortest

paths
1
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% that

include B
1/1

1/1
2/2
1/2
0/1
0/1

Step 3: What proportion of those shortest paths contain the node of interest?



Betweenness Centrality
Example

cp(v) = 2 e @ :

vty O ’

Source Target OiZ?}?:teSt in(z)hi(}il:tB |
A C 1 1/1
A D 1 1/1
A E 2 2/2
C D 2 1/2
C E 1 0/1
D E 1 0/1

Step 4: Add. 30



Utility of Betweenness

Identity potential bottlenecks in the network.

Bridge Betweenness: Restrict pairs of nodes in

previous table to a sources and targets from different
communities.

Teaching a robot how to learn new skills by first

identifyving which skill is most beneficial to master next.



http://all.cs.umass.edu/pubs/2008/simsek_b_NIPS08.pdf
http://all.cs.umass.edu/pubs/2008/simsek_b_NIPS08.pdf

Utility of Betweenness

Indicating the interdisciplinarity of scientific journals.
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https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.20614?casa_token=DU4jkb3GfNIAAAAA:RSzNvIK2dleW6zV0OGiiXGrADjo7xKS1l5b5MB7mpTprnj9lnzevEseV8Nt8aawZ2B5f70v6eTfWDzU

Betweenness Centrality
Normalization

e« Normalize each value by the maximum possible centrality
score = the number of pairs of nodes excluding the given
node.

e For directed graph, normalize by (n-1)(n-2)
e For undirected graph, normalize by (n-1)(n-2)/2
e Again, normalization just allows for comparison

across networks.



Betweenness Centrality
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Centrality

e Common measures of centrality:

e Closeness Centrality



Closeness Centrality

e Measures how quickly information will spread from one
node to all other nodes.

e Node is important if close to all other nodes.

e Farness defined as the sum of distances to all other

nodes. Closeness is then the inverse of farness.



Closeness Centrality




Utility of Closeness

“In an auditory lexical decision task participants
responded more quickly to words with high closeness

centrality |in a phonological network]|.”
—Goldstein, Vitevitch. U Kansas. 2017

Identifying a eroup of nodes to optimally spread

information.

City planning

“Too interconnected to fail” - examination of centrality of

institutions in network of financial institutions. Closeness

implies transmission of failure to many in a few steps.


https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01683/full
https://www.sciencedirect.com/science/article/pii/S0378437117311858?casa_token=QtzC70JH9swAAAAA:1nUX8_plzygwU5WR24U9eoQXoHgHFCARuoFPVEC8Hxa5JOkDbG1JVE5gUI7VJKbNPhBGqzNnRJs
https://www.sciencedirect.com/science/article/pii/S0378437117311858?casa_token=QtzC70JH9swAAAAA:1nUX8_plzygwU5WR24U9eoQXoHgHFCARuoFPVEC8Hxa5JOkDbG1JVE5gUI7VJKbNPhBGqzNnRJs
https://link.springer.com/article/10.1140/epjb/e2016-60431-2
https://www.sciencedirect.com/science/article/pii/S0378437114002003?casa_token=V0sLWKVp4WMAAAAA:MxuXBBjMRRpOxkAws1YN5khqTIVd8T8qApr0OTAiC3Ym5GVM4ps0XNcxz2aJgt_3_0L__MJaSbo

Closeness Centrality

1
2. L, A, v)

c.(v) =

 Normalize by maximum possible score, which would

be 1/(n-1) when the node is connected to all others.
e i.e. multiply by (n-1) to normalize.

e Only defined for connected graphs



Comparing 3 Centralities

e The centrality measures should be correlated.

o If not, that might mean something interesting.

Low Low Low
Degree Closeness Betweenness

In cluster far from Connections are
High rest of network redundant.
Degree Communication

bypasses node

Key player, tied to Prob. multiple paths
High important, active everywhere in
Closeness alternatives network. Near many,

just like everyone else

A few edges are RARE. Node

crucial for network monopolizes ties from

High

Betweenness

flow few to many



Comparing 3 Centralities
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Comparing 3 Centralities
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Code for Previous Slides

library (igraph)

c.b=betweenness (slack, v=V(slack), directed=T)
c.c=closeness (slack, v=V(slack), mode="total")
c.d=degree (slack, v=V(slack))

centralities = data.frame (betweenness = c.Db,
closeness = c.c,
degree = c.d,
cohort = vertex attr(slack, "Cohort"))
cor (centralities[,1:3])
pairs (centralities[,1:3],
col = c('blue', 'orange') [as.factor (centralities$cohort)])



Centrality

e Common measures of centrality:

e Eigenvector Centrality



Figenvector Centrality

e Would you rather have influence over the Provost

and the Chancellor or all of the university’s graduate
TAs?

e The previous definitions of centrality have a problem:
They don’t take into account the importance of your
contacts.

e Previous measures don’t necessarily measure

influence.



Figenvector Centrality

What if each node’s centrality was the sum of the
centralities of the nodes to which it is connected?

€A = Cp
Cpg=Cyt+Cc+Cp
Cc=Cg+cCp
Cp=Cg+Cc

cy = 0cy + lcg + Oc + Ocp
cg = lcy +0cg + 1+ Ocp
cc=0cy+ lcg+0cr+ lcp

Adjacency Matrix

cp=0cy + lcg+ lc-+ Ocp



Figenvector Centrality

What if each node’s centrality was the sum of the
centralities of the nodes to which it is connected?

e Let A be a binary adjacency matrix.

e Let X be the vector of centralities.

010 0 Cq
{101 0 |
A=191 0 1 *= | ee

0110, Cp

Then what we want is;: AxX =X



Figenvector Centrality

AX =X

e Of course, this may not always be possible, so we’ll add in
a constant — each node’s centrality is proportional to the

sum of its neighbors.
Ax = Ax

e Look familiar?? The ever-useful eigenvector equation



Figenvector Centrality

But which eigenvalue??
We want the centralities to be positive.

The first eigenvector of an adjacency matrix is
guaranteed to have all positive elements.

o (Perron-Frobenius Theorem of Nonnegative Matrices)

Google’s PageRank is a variant of eigenvector centrality,
using the hyperlink structure of the net.

e See original HITS algorithm



Utility of Eigenvector
Centrality

It’s the most useful measure because it contains a notion

of influence of neighbors.

Google

Examining Volleyball game flow

Cooperative Streaming - timely and etficient distribution

of content in a communication network

Feature Selection!



https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203348
https://ieeexplore.ieee.org/abstract/document/7942071?casa_token=kAFs9iej6w4AAAAA:0-_R5ybg7I0FPwyElGU4GS7Wql6bGuv_LMEN0JksDKZo7F9obcGuRUVZM1NRiUiYEiFcx80uqA
https://iris.univr.it/retrieve/handle/11562/961845/71658/NFmcp2016_paper_13.pdf
http://carlmeyer.com
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When is Centrality
Interesting?”

VS.




Centralization of Network

e How much variation in centrality scores?

e« How central is maximum centrality compared to others?

0 < Centralization < 1
All nodes have the One node has maximal

same centrality centrality, all other nodes

have minimal centrality



Centralization of Network

e Freeman’s formula for degree centralization:

Z?zl (max(cD) — CD(i))

b= T D=2

e« (Can be adopted for other types of centrality just by
changing denominator and centrality function.



Calculating Centrality

Scores in Gephi

Try: Filtering + Rerunning measures.



Settings

= Network Overview
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