Network Analysis

Dr. Shaina Race Institute for Advanced Analytics

Descriptives of Network Structure

Components, Cliques, Bridges, Brokers

Connected Components

- A graph is **connected** if every node can be reached from every other node
 - (no separate pieces)
- A **component** of a graph is a collection of nodes which are connected themselves but disconnected from the rest of the graph.

Connected Components (in Directed Networks)

• Strongly Connected: All nodes must be connected by directed path in both directions

• Weakly Connected: Nodes connected by edges regardless of direction

Pop Quiz

If a network has more than one connected component, what does that say about it's adjacency matrix?

Solution

Utility of Connected Components

- In retail setting, find *families* or other purchasing units according to shared traits:
 - Form network with edges between individuals if they share an email or a credit card or a license plate etc.
 - The connected components of this network could create family IDs
- In fraud setting, similar analysis might provide fraudulent networks of claims.

Bridges and Brokers

- A **bridge** is an edge whose removal disconnects the network.
- A **broker** is a node whose removal disconnects the network.

• Important players in the "small world effect."

Cliques

(aka Complete Graphs)

A **clique** is a group of *three or more* nodes among which all possible edges exist. Each node in a clique is connected to every other node in that clique.

Nodal Degree

weighted/unweighted, directed/undirected and distribution across a network.

- The degree of a node measures the connectedness of that node in the network.
- For a binary graph, it is simply the number of edges connected to that node.

For a weighted graph, it is the sum of the weights of edges connected to that node.

For a directed graph, we calculate both an in-degree and an out-degree.

Nodal degrees are sums of rows and/or columns of the corresponding adjacency matrix.

Nodal degrees are sums of rows and/or columns of the corresponding adjacency matrix.

In Gephi...

Filters Statistics 🛇	0						
Settings							
■ Network Overview							
Average Degree	Run ®						
Avg. Weighted Degree	Run 🐵						
Network Diameter	Run 🐵						
Graph Density	Run ®						
HITS	Run ®						
Modularity	Run ®						
PageRank	Run ®						
Connected Components	Run ®						
☑ Node Overview							
Avg. Clustering Coefficient	Run ®						
Eigenvector Centrality	Run 🐵						
☑ Edge Overview							
Avg. Path Length	Run ®						
☑ Dynamic							
# Nodes	Run ®						
# Edges	Run ®						
Degree	Run 🐵						
Clustering Coefficient	Run 🐵						

Worst. Visuals. Ever.

Degree Distribution

(Yes, that should be a histogram.)

MSA Degree Comparison

MSA 2020

MSA 2021

Average Degree: 57.990

Average Degree:

Average Weighted Degree: 375.210

Average Weighted Degree:

In Gephi...

Any time you run a procedure from the statistics panel that computes a statistic, you'll see that information populate in Data Laboratory, which means you can use it in your viz.

Degree Distribution

- It's common to look at the distribution of degrees in a network.
- Usually many nodes with low degree and few with high degree.

Degree Distributions

- It's known that most networks follow natural patterns when it comes to degree distribution.
- Two most common distributions:

Power Law

• The degree distribution appears as a **power law**: a relationship where one quantity varies as a power of another.

$$y = Ce^{-x}$$

- Long tail
- On a log-log scale, relationship looks linear.

Power Law Graphs aka Scale Free Networks

• Power law graphs contain a few **hubs** (highly connected nodes) but the majority of nodes in the network have low degree.

Power Law Graphs aka Scale Free Networks

- Properties
 - Robust to random breakdown
 - Vulnerable to targeted attacks
 - Viruses can persist even at low transmission rates
- Real World Examples
 - Email Networks
 - World Wide Web
 - Intranets
 - Diseases with short transmission window
 - Needle Sharing
 - Sexual Contacts

MSA Degree Comparison

Degree Distribution MSA2020

Degree Distribution MSA2021

In R: hist(degree(slack))

Other Descriptives

Density, Shortest Paths, Eccentricity, Clustering Coefficients

Density of Graph

- The **density** of a graph measures how interconnected the nodes are.
- Simply the proportion of possible edges that actually exist in the graph.

6 possible edges

Density = 2/6 = 33%

Density = 4/6 = 66%

Density of Graph

- Let E be the number of edges in the graph
- Let N the number of vertices.
- The density, Δ , is then:

•
$$\Delta = \frac{2E}{N(N-1)}$$
 For undirected graphs

•
$$\Delta = \frac{E}{N(N-1)}$$
 For directed graphs

In Gephi...

Filters	Statistics 🛇		0
Settings			
■ Netwo i	rk Overview	ı	
Average [Degree		Run ®
Avg. Weig	hted Degree	:	Run @
Network I	Diameter		Run ®
Graph De	nsity		Run
HITS			Run ®
Modularit	у		Run 🐵
PageRank			Run @
Connecte	d Componer	nts	Run @
☑ Node (Overview		
Avg. Clus	tering Coeff	icient	Run ®
Eigenvect	or Centrality	,	Run @
団 Edge C	verview		
Avg. Path	Length		Run ®
団 Dynam	nic		
# Nodes			Run @
# Edges			Run @
Degree			Run @
Clustering	g Coefficient	:	Run 🐵

MSA Density Comparison

MSA 2020

MSA 2021

Directed Density: 0.558

Undirected Density: 0.711

Directed Density:

Undirected Density:

Shortest Paths

(Geodesic Distances)

• The **geodesic or graph distance** between two vertices is the length of the shortest path (number of edges) from one vertex to the other.

• For directed graph, must be a directed path

Diameter/Eccentricity

• Graph Diameter: Largest Geodesic Distance in the whole network

Eccentricity of a node: Distance to furthest node from

that node.

In Gephi...

Filters	Statistics 🛭		0
Settings			
▼ Netwo	rk Overview		
Average (Degree		Run ®
Avg. Weig	ghted Degree		Run 🐵
Network	Diameter		Run ®
Graph De	nsity		Run 🐵
HITS			Run 🐵
Modularit	ty		Run ®
PageRank			Run ®
Connecte	d Components		Run ®
■ Node (Overview		
Avg. Clus	tering Coeffic	ent	Run ®
Eigenvector Centrality			Run @
団 Edge (Overview		
Avg. Path	Length		Run ®
☑ Dynan	nic		
# Nodes			Run 🐵
# Edges			Run ®
Degree			Run 🐵
Clusterin	g Coefficient		Run ®

MSA Diameter Comparison

MSA 2020

MSA 2021

Directed Diameter: 4

Directed Diameter:

Average Path length: 1.445

Average Path length:

Clustering Coefficient

- The clustering coefficient of a node is a measure of the extent to which its neighbors are also neighbors of each other.
- It is the *density* of the subgraph induced by the vertex.

 (= that vertex and all of its neighbors and any edges between them)
- Measures **Transitivity**: if A is connected to B and B is connected to C what is the probability that A is connected to C?
- Ratio of number edges existing between neighbors to those that could possibly exist.

Clustering Coefficient

Clustering Coefficients for Entire Network

Measure the transitivity of the entire network – does the transitive property hold most of the time?

Clustering Coefficients for Entire Network

- Network Average Clustering Coefficient: Simply average the clustering coefficient for each node.
- Global Clustering Coefficient: Proportion of connected triples that make triangles

$$C = \frac{3 \cdot \text{number of triangles}}{\text{number of connected triples of vertices}}$$

- Connected triple is 3 vertices joined by 2 edges.
- Each triangle makes 3 connected triples.

Utility of Clustering Coefficients

- "The clustering coefficient of a word [in a phonological network] has been shown to influence a number of language- and memory-related processes."
 - —Goldstein, Vitevitch. U Kansas. 2017
- <u>Directed clustering coefficient as a measure of systemic</u> risk in complex banking networks.
- Relationship to success of cooperation in networks
- <u>Clustering and preferential attachment in growing networks</u>
- Clustering and the synchronization of oscillator networks

In Gephi...

Run ®

Run @

Run ®

Run

Run

Run

Run @

Run ®

Run 3

Run ®

Run ®

Run ®

Run ®

Run ®

Run

MSA Clustering Coefficient Comparison

MSA 2020

MSA 2021

Average Clustering Coefficient: 0.716

Average Clustering Coefficient: