
Network
Analysis

Dr. Shaina Race
Institute for Advanced Analytics

Community Detection
i.e. Clustering

Clustering in Graphs
1. Can still use classical algorithms (i.e. k-means)

2. …Or choose an algorithm specifically for graphs

3. Fundamental Theorem: Nothing works best all the time!

Clustering in Graphs
1. Can still use classical algorithms (i.e. k-means)

• Edge weights should reflect similarity and not distance

• Use the adjacency matrix like a data matrix
• The “observations” and “variables” are the same entities, but you simply characterize

an observation by its similarity to others.

2. …Or choose an algorithm specifically for graphs
• Spectral (Eigenvector) methods
• Modularity
• Minimum Spanning Trees

3. Theorem: Nothing works best all the time!

A B C D E F G H I
A 9 9 9 4 3 1 1 0 0
B 9 9 9 8 1 0 0 0 3
C 9 9 9 0 0 0 0 1 0
D 4 8 0 9 1 9 1 1 0
E 3 1 0 1 9 0 0 0 5
F 1 0 0 9 0 9 8 8 0
G 1 0 0 1 0 8 9 9 7
H 0 0 1 1 0 8 9 9 7
I 0 3 0 0 5 0 7 7 9

Clustering in Graphs
1. Can still use classical algorithms (i.e. k-means)

• Edge weights should reflect similarity and not distance

• Use the adjacency matrix like a data matrix
• The “observations” and “variables” are the same entities, but you simply characterize

an observation by its similarity to others.

2. …Or choose an algorithm specifically for graphs
• Spectral (Eigenvector) methods
• Modularity
• Minimum Spanning Trees

3. Theorem: Nothing works best all the time!

Spectral Clustering
(Spectral ➔ Eigenvalues/Eigenvectors. Yay!)

Not just for Graphs!

• Keep in mind the following methods operate on a
similarity matrix (i.e. adjacency matrix).

• If you develop a notion of similarity using traditional
data, these methods can be useful for clustering any data!

The Laplacian Matrix
• Spectral methods typically use a Laplacian Matrix.

• Let be an adjacency matrix for a graph (or a similarity
matrix for some data)

• Let be a diagonal matrix containing the degrees (of
each node:

•

• The Laplacian matrix is defined as

A

D di

D = diag{d1, d2, … , dn}

L = D − A

The Laplacian Matrix
Example

The Laplacian Matrix
Example

Simple Spectral Clustering
• The Laplacian matrix is defined as L = D-A

• The Fiedler vector is the eigenvector associated with
the second smallest eigenvalue of L.

• The Fiedler vector is known to contain information about
optimally partitioning a graph

“This vector has
been found to

have applications
in fields such as

graph partitioning
and graph
drawing.”

A Cascadic Multigrid Algorithm for Computing the Fiedler Vector of Graph Laplacians
John C. Urschel, Xiaozhe Hu, Jinchao Xu, Ludmil T. Zikatanov 12/2014

Baltimore Ravens' ex-Offensive Lineman John Urschel can tell you about it

https://arxiv.org/abs/1412.0565
http://www.npr.org/sections/thetwo-way/2015/03/20/394340722/john-urschel-ravens-offensive-lineman-publishes-math-paper

Simple Spectral Clustering
Use the signs of the entries in the Fiedler vector.

• Nodes associated with positive entries in one cluster
• Nodes associated with negative entries in second cluster
• Arbitrarily assign nodes associated with zero entries

(often called Articulation Points – sometimes they are brokers)

v6 =

−0.44
−0.44
−0.33

0
0.33
0.44
0.44

Simple Spectral Clustering
How to get more than two clusters? (Two Ways)

• Repeat process on each cluster.
• Use additional eigenvectors (Two Ways)

• Use the sign patterns (shown below)
• Cluster the rows of the eigenvectors with k-means (Next Slide)

+ +-,+

v6 =

−0.44
−0.44
−0.33

0
0.33
0.44
0.44

v5 =

0.28
0.28

−0.16
−0.79
−0.16
0.28
0.28

-,- +/-,- +,-

Simple Spectral Clustering
Use k-means to cluster the rows of the eigenvectors
• (Get to choose k in this case)

v6 =

−0.44
−0.44
−0.33

0
0.33
0.44
0.44

v5 =

0.28
0.28

−0.16
−0.79
−0.16
0.28
0.28

Advanced Spectral
Clustering

• NCUT
• Ratio Cut
• Normalized Spectral Clustering
• …Long list of algorithms

• Most involve the Laplacian Matrix (normalized in
different ways), and k-means run on Eigenvectors
(normalized in different ways)

Modularity Maximization
Mark Newman et. al

Modularity Maximization
• Currently the most popular algorithm for community

detection.
• Developed in 2006 by Mark Newman (UMichigan)
• Algorithm Intuition:

• Compare the observed network to what you would
expect to find at random.

• Where are there more edges than expected?

• These areas may define communities.

Modularity Maximization

Modularity
• Modularity is a number that describes the extent to which

given groups form communities in a graph.
• Fraction of edges within groups minus the expected fraction if

edges were distributed at random.
• Number in range [-1, 1)

• negative random partition

• (We’d expect to find more edges within our groups if they were
distributed at random)

• nearer 1 better communities (=1 components)

• (We see far more edges within our groups than we’d expect to find
at random)

⟶

⟶ ⟶

Modularity Maximization
Picks the partitioning of the vertices that maximizes the modularity.

Modularity Maximization
Advantages
• Automatically determines number of clusters

• Intuitive rationale for/definition of a community

• Easy to program and compute

Disadvantages
• Node can belong to only one community (hard clustering)
• If first eigenvalue of “modularity matrix” is negative – no clusters.

• (could be an advantage!)

Minimum Spanning Trees
An alternative

Minimum Spanning Trees
(or maximal spanning trees in the

 case of network similarity)

• Equivalent to Single Linkage hierarchical clustering.
• Creates a tree (graph with no cycles) that connects every

node.
• Cutting all edges of the tree whose weight doesn’t meet a

pre-specified threshold will result in clusters.
• Changing threshold changes the number of clusters.

1

5

5

5

4

4

4

3

3

3

4

2

Building the Maximum Spanning Tree
(In most graphs, edge weights reflect similarity)

1

5

5

5

4

4

4

3

3

3

4

2

Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.

1

5

5

5

4

4

4

3

3

3

4

2

Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.

1

5

5

5

4

4

4

3

3

3

4

2

Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.

Addition of this
edge would have
created a cycle.

1

5

5

5

4

4

4

3

3

3

4

2

Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.

Addition of this
edge would have
created a cycle.

Cut the tree at some threshold.

For example, cut all red edges < 2

1

5

5

5

4

4

4

3

3

3

4

2

Cut all tree edges < 2

You pick the threshold, then number
of clusters determined automatically.

1

5

5

5

4

4

4

3

3

3

4

2

Ensemble Clustering

• Try many different clustering algorithms
• (Or even k-means with different starting points)
• Create a network where the weight of the edge

connecting object i to object j is the number of
times that object i was clustered with object j.

• Cluster the resulting network using any method

Ensemble Clustering

