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Community Detection
i.e. Clustering



Clustering in Graphs
1. Can still use classical algorithms (i.e. k-means) 

2. …Or choose an algorithm specifically for graphs 

3. Fundamental Theorem: Nothing works best all the time!



Clustering in Graphs
1. Can still use classical algorithms (i.e. k-means) 

• Edge weights should reflect similarity and not distance 

• Use the adjacency matrix like a data matrix 
• The “observations” and “variables” are the same entities, but you simply characterize 

an observation by its similarity to others.  

2. …Or choose an algorithm specifically for graphs 
• Spectral (Eigenvector) methods 
• Modularity 
• Minimum Spanning Trees 

3. Theorem: Nothing works best all the time!

A B C D E F G H I
A 9 9 9 4 3 1 1 0 0
B 9 9 9 8 1 0 0 0 3
C 9 9 9 0 0 0 0 1 0
D 4 8 0 9 1 9 1 1 0
E 3 1 0 1 9 0 0 0 5
F 1 0 0 9 0 9 8 8 0
G 1 0 0 1 0 8 9 9 7
H 0 0 1 1 0 8 9 9 7
I 0 3 0 0 5 0 7 7 9
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Spectral Clustering
(Spectral ➔ Eigenvalues/Eigenvectors.  Yay!)



Not just for Graphs! 

• Keep in mind the following methods operate on a 
similarity matrix (i.e. adjacency matrix). 

• If you develop a notion of similarity using traditional 
data, these methods can be useful for clustering any data! 



The Laplacian Matrix
• Spectral methods typically use a Laplacian Matrix. 

• Let  be an adjacency matrix for a graph (or a similarity 
matrix for some data) 

• Let  be a diagonal matrix containing the degrees (  of 
each node: 

•  

• The Laplacian matrix is defined as 

A

D di

D = diag{d1, d2, … , dn}

L = D − A



The Laplacian Matrix 
Example



The Laplacian Matrix 
Example



Simple Spectral Clustering
• The Laplacian matrix is defined as L = D-A 

• The Fiedler vector is the eigenvector associated with 
the second smallest eigenvalue of L. 

• The Fiedler vector is known to contain information about 
optimally partitioning a graph



“This vector has 
been found to 

have applications 
in fields such as 

graph partitioning 
and graph 
drawing.” 

A Cascadic Multigrid Algorithm for Computing the Fiedler Vector of Graph Laplacians  
John C. Urschel, Xiaozhe Hu, Jinchao Xu, Ludmil T. Zikatanov 12/2014

Baltimore Ravens' ex-Offensive Lineman John Urschel can tell you about it

https://arxiv.org/abs/1412.0565
http://www.npr.org/sections/thetwo-way/2015/03/20/394340722/john-urschel-ravens-offensive-lineman-publishes-math-paper


Simple Spectral Clustering
Use the signs of the entries in the Fiedler vector. 

• Nodes associated with positive entries in one cluster 
• Nodes associated with negative entries in second cluster 
• Arbitrarily assign nodes associated with zero entries  

(often called Articulation Points – sometimes they are brokers)
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Simple Spectral Clustering
How to get more than two clusters? (Two Ways) 

• Repeat process on each cluster. 
• Use additional eigenvectors (Two Ways) 

• Use the sign patterns (shown below) 
• Cluster the rows of the eigenvectors with k-means (Next Slide)

+ +-,+

v6 =

−0.44
−0.44
−0.33

0
0.33
0.44
0.44

v5 =

0.28
0.28

−0.16
−0.79
−0.16
0.28
0.28

-,- +/-,- +,-



Simple Spectral Clustering
Use k-means to cluster the rows of the eigenvectors 
• (Get to choose k in this case)
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Advanced Spectral 
Clustering

• NCUT 
• Ratio Cut 
• Normalized Spectral Clustering 
• …Long list of algorithms 

• Most involve the Laplacian Matrix (normalized in 
different ways), and k-means run on Eigenvectors 
(normalized in different ways)



Modularity Maximization
Mark Newman et. al



Modularity Maximization
• Currently the most popular algorithm for community 

detection. 
• Developed in 2006 by Mark Newman (UMichigan) 
• Algorithm Intuition: 

• Compare the observed network to what you would 
expect to find at random.  

• Where are there more edges than expected? 

• These areas may define communities. 



Modularity Maximization



Modularity
• Modularity is a number that describes the extent to which 

given groups form communities in a graph. 
• Fraction of edges within groups minus the expected fraction if 

edges were distributed at random. 
• Number in range [-1, 1) 

• negative  random partition 

• (We’d expect to find more edges within our groups if they were 
distributed at random) 

• nearer 1  better communities (=1  components) 

• (We see far more edges within our groups than we’d expect to find 
at random)

⟶

⟶ ⟶



Modularity Maximization
Picks the partitioning of the vertices that maximizes the modularity.





Modularity Maximization
Advantages 
• Automatically determines number of clusters 

• Intuitive rationale for/definition of a community  

• Easy to program and compute 

Disadvantages 
• Node can belong to only one community (hard clustering) 
• If first eigenvalue of “modularity matrix” is negative – no clusters. 

• (could be an advantage!)



Minimum Spanning Trees
An alternative



Minimum Spanning Trees 
(or maximal spanning trees in the 

 case of network similarity)

• Equivalent to Single Linkage hierarchical clustering. 
• Creates a tree (graph with no cycles) that connects every 

node. 
• Cutting all edges of the tree whose weight doesn’t meet a 

pre-specified threshold will result in clusters.  
• Changing threshold changes the number of clusters.
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Building the Maximum Spanning Tree 
(In most graphs, edge weights reflect similarity)
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Add the most similar edges to the spanning 
tree, as long as no cycles are created. 
Repeat.
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Add the most similar edges to the spanning 
tree, as long as no cycles are created. 
Repeat.

Addition of this 
edge would have 
created a cycle. 
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tree, as long as no cycles are created. 
Repeat.

Addition of this 
edge would have 
created a cycle. 



Cut the tree at some threshold.  

For example, cut all red edges  < 2
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Cut all tree edges < 2

You pick the threshold, then number 
of clusters determined automatically.
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Ensemble Clustering 

• Try many different clustering algorithms 
• (Or even k-means with different starting points) 
• Create a network where the weight of the edge 

connecting object i to object j is the number of 
times that object i was clustered with object j. 

• Cluster the resulting network using any method



Ensemble Clustering 


