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Community Detection

i.e. Clustering



Clustering in Graphs

1. Can still use classical algorithms (i.e. k-means)

2. ...0Or choose an algorithm specifically for graphs

3. Fundamental Theorem: Nothing works best all the time!



Clustering in Graphs

1. Can still use classical algorithms (i.e. k-means)

e Edge weights should reflect similarity and not distance
e Use the adjacency matrix like a data matrix

e The “observations” and “variables” are the same entities, but you simply characterize

an observation by its similarity to others.
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Clustering in Graphs

2. ...0Or choose an algorithm specifically for graphs

o Spectral (Eigenvector) methods
e Modularity

e Minimum Spanning Trees

3. Theorem: Nothing works best all the time!



Spectral Clustering

(Spectral & Eigenvalues/Eigenvectors. Yay!)



Not just for Graphs!

e Keep in mind the following methods operate on a

similarity matrix (i.e. adjacency matrix).

e If you develop a notion of similarity using traditional
data, these methods can be useful for clustering any datal



The Laplacian Matrix

Spectral methods typically use a Laplacian Matrix.

Let A be an adjacency matrix for a graph (or a similarity

matrix for some data)

Let D be a diagonal matrix containing the degrees (d; of

each node:
o D =diagld,,d,, ... ,d,}
The Laplacian matrix is defined as L=D — A



The Laplacian Matrix

Example
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The Laplacian Matrix

Example

Labelled graph

Adjacency matrix

Laplacian matrix
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Simple Spectral Clustering

The Laplacian matrix is defined as L = D-A

The Fiedler vector is the eigenvector associated with

the second smallest eigenvalue of L.

The Fiedler vector is known to contain information about

optimally partitioning a graph
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Baltimore Ravens' ex-Offensive LlnemaanhnUrschel can tell you about it



https://arxiv.org/abs/1412.0565
http://www.npr.org/sections/thetwo-way/2015/03/20/394340722/john-urschel-ravens-offensive-lineman-publishes-math-paper

Simple Spectral Clustering

Use the signs of the entries in the Fiedler vector.

 Nodes associated with positive entries in one cluster
 Nodes associated with negative entries in second cluster

o Arbitrarily assign nodes associated with zero entries

(often called Articulation Points — sometimes they are brokers)
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Simple Spectral Clustering

How to get more than two clusters? (Two Ways)

e Repeat process on each cluster.

e Use additional eigenvectors (Two Ways)

e Use the sign patterns (shown below)

e Cluster the rows of the eigenvectors with k-means (Next Slide)
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Simple Spectral Clustering

Use k-means to cluster the rows of the eigenvectors

o (Get to choose k in this case)

Scatter Plot of Eigenvectors
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Advanced Spectral
Clustering

NCUT

Ratio Cut

Normalized Spectral Clustering
...Long list of algorithms

Most involve the Laplacian Matrix (normalized in
different ways), and k-means run on Eigenvectors
(normalized in different ways)



Modularity Maximization

Mark Newman et. al



Modularity Maximization

o (Currently the most popular algorithm for community

detection.
e Developed in 2006 by Mark Newman (UMichigan)
e Algorithm Intuition:

o Compare the observed network to what you would

expect to find at random.
e Where are there more edges than expected?

e These areas may define communities.
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Modularity

Modularity is a number that describes the extent to which

given groups form communities in a graph.

Fraction of edges within groups minus the expected fraction if
edges were distributed at random.
Number in range [-1, 1)

e negative — random partition

e (We’d expect to find more edges within our groups if they were

distributed at random)
e nearer 1 — better communities (=1 — components)

e (We see far more edges within our groups than we’d expect to find

at random)



Modularity Maximization

Picks the partitioning of the vertices that maximizes the modularity.




Algorithm 13 Modularity Procedure for Network Community Detection (Newman) [94]

S Ok BN

Input: n x n adjacency matrix A for an undirected graph to be partitioned
Let d; be the i row sum of A. Letd = ¥ , d;

Form the matrix P with P;; = d;d;/d.

Form the modularity matrix B = A —P.

Compute the largest eigenvalue A, and corresponding eigenvector u; of B.
If A} <0, stop. There is no partition of this graph.

Otherwise partition the vertices of the graph into 2 clusters as follows

Ci = {i:ui(i) <0}
C, = {i:uy(i) > 0} (3.11)

Determine further partitions by extracting the rows and columns of the original adja-
cency matrix corresponding to the vertices in each cluster to form A’ and repeat the
algorithm with A" until each created cluster fails to partition in step 5.

Output: Final clusters.




Modularity Maximization

Advantages
e Automatically determines number of clusters
e Intuitive rationale for/definition of a community
e Easy to program and compute
Disadvantages
e Node can belong to only one community (hard clustering)

o If first eigenvalue of “modularity matrix” is negative — no clusters.

e (could be an advantage!)



Minimum Spanning Trees

An alternative



Minimum Spanning Trees

(or maximal spanning trees in the

case of network similarity)

Equivalent to Single Linkage hierarchical clustering.

Creates a tree (graph with no cycles) that connects every

node.

Cutting all edges of the tree whose weight doesn’t meet a
pre-specitied threshold will result in clusters.

Changing threshold changes the number of clusters.



Building the Maximum Spanning Tree
(In most graphs, edge weights reflect similarity)




Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.




Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.




Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.

Addition of this

edge would have

created a cycle.




Add the most similar edges to the spanning
tree, as long as no cycles are created.
Repeat.

Addition of this

edge would have

created a cycle.




Cut the tree at some threshold.

For example, cut all red edges < 2



Cut all tree edges <2

You pick the threshold, then number

of clusters determined automatically.




Ensemble Clustering

Try many different clustering algorithms
(Or even k-means with different starting points)

Create a network where the weight of the edge
connecting object 2 to object 5 is the number of

times that object 72 was clustered with object j.

Cluster the resulting network using any method



Ensemble Clustering



